Damping Effect on PageRank Distribution

We extend the personalized PageRank model invented by Brin and Page to a model family, endowing each model with a characteristic damping scheme. On social bio-physical networks of today, actions, reactions and counteractions vary or unfold more than ever. It is imperative to advance modeling methodology and enrich model repertoire in order to capture or uncover, differentiate and recognize various network phenomenons and propagation patterns. We investigate the response in PageRank distribution to inter- and intra-model variation in damping. Our investigation leads to new theoretical and empirical findings. In empirical study, we use quantitative measures to assess damping effect of 3 particular models on 6 large realworld link graphs. It is found that the patterns of PageRank vectors vary more distinctively among the 3 models on each graph than among the 6 graphs with each model. This suggests the utility of model variety for differentiating network activities and propagation patterns. Our quantitative analysis of damping effect, over many model and parameter changes, is facilitated by a highly efficient algorithm, which calculates all PageRank vectors at once via a commonly shared, spectrally invariant subspace. The spectral space is found to be of low dimension with each of the real-world link graphs.

[1]  Jasmine Novak,et al.  PageRank Computation and the Structure of the Web: Experiments and Algorithms , 2002 .

[2]  Sebastiano Vigna,et al.  PageRank as a function of the damping factor , 2005, WWW '05.

[3]  Huaiyu Zhu On Information and Sufficiency , 1997 .

[4]  Gene H. Golub,et al.  Exploiting the Block Structure of the Web for Computing , 2003 .

[5]  Taher H. Haveliwala,et al.  The Second Eigenvalue of the Google Matrix , 2003 .

[6]  Xi Chen Exploiting Common Structures Across Multiple Network Propagation Schemes , 2018 .

[7]  Jérôme Kunegis,et al.  KONECT: the Koblenz network collection , 2013, WWW.

[8]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[9]  Amy Nicole Langville,et al.  A Reordering for the PageRank Problem , 2005, SIAM J. Sci. Comput..

[10]  Enoch Peserico,et al.  Choose the Damping, Choose the Ranking? , 2009, WAW.

[11]  Fan Chung,et al.  The heat kernel as the pagerank of a graph , 2007, Proceedings of the National Academy of Sciences.

[12]  Xu Jia,et al.  A Fast Two-Stage Algorithm for Computing SimRank and Its Extensions , 2010, WAIM Workshops.

[13]  Taher H. Haveliwala,et al.  Adaptive methods for the computation of PageRank , 2004 .

[14]  Wenbo Zhao,et al.  PageRank and Random Walks on Graphs , 2010 .

[15]  Carl D. Meyer,et al.  Deeper Inside PageRank , 2004, Internet Math..

[16]  Daniel Sheldon,et al.  Manipulation of PageRank and Collective Hidden Markov Models , 2010 .

[17]  Matthew Richardson,et al.  The Intelligent surfer: Probabilistic Combination of Link and Content Information in PageRank , 2001, NIPS.

[18]  Taher H. Haveliwala Topic-Sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search , 2003, IEEE Trans. Knowl. Data Eng..

[19]  Fan Chung Graham,et al.  A Local Graph Partitioning Algorithm Using Heat Kernel Pagerank , 2009, Internet Math..

[20]  Jure Leskovec,et al.  Defining and evaluating network communities based on ground-truth , 2012, Knowledge and Information Systems.

[21]  Yuchen Qian Variable Damping Effect on Network Propagation , 2018 .

[22]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[23]  N. S. Mendelsohn,et al.  Coverings of Bipartite Graphs , 1958, Canadian Journal of Mathematics.

[24]  Gene H. Golub,et al.  Extrapolation methods for accelerating PageRank computations , 2003, WWW '03.

[25]  Amy Nicole Langville,et al.  Google's PageRank and beyond - the science of search engine rankings , 2006 .

[26]  Pavel Berkhin,et al.  A Survey on PageRank Computing , 2005, Internet Math..

[27]  Rajeev Motwani,et al.  The PageRank Citation Ranking : Bringing Order to the Web , 1999, WWW 1999.

[28]  Fan Chung A Local Graph Partitioning Algorithm Using Heat Kernel Pagerank , 2009 .

[29]  Ashish Goel,et al.  FAST-PPR: scaling personalized pagerank estimation for large graphs , 2014, KDD.

[30]  Taher H. Haveliwala Efficient Computation of PageRank , 1999 .

[31]  Jens Lehmann,et al.  DBpedia: A Nucleus for a Web of Open Data , 2007, ISWC/ASWC.

[32]  Jennifer Widom,et al.  Scaling personalized web search , 2003, WWW '03.

[33]  Ying Zhang,et al.  Krylov Subspace Algorithms for Computing GeneRank for the Analysis of Microarray Data Mining , 2010, J. Comput. Biol..

[34]  Desmond J. Higham,et al.  GeneRank: Using search engine technology for the analysis of microarray experiments , 2005, BMC Bioinformatics.

[35]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[36]  Sepandar D. Kamvar,et al.  An Analytical Comparison of Approaches to Personalizing PageRank , 2003 .