Time dependent voiding mechanisms in polyamide 6 submitted to high stress triaxiality: experimental characterisation and finite element modelling

[1]  A. King,et al.  Observations by in-situ X-ray synchrotron computed tomography of the microstructural evolution of semi-crystalline Polyamide 11 during deformation , 2016 .

[2]  N. Saintier,et al.  Voiding mechanisms in semi-crystalline polyamide 6 during creep tests assessed by damage based constitutive relationships and finite elements calculations , 2016 .

[3]  H. Proudhon,et al.  Structural versus microstructural evolution of semi-crystalline polymers during necking under tension: Influence of the skin-core effects, the relative humidity and the strain rate , 2016 .

[4]  W. Ludwig,et al.  Three dimensional quantification of anisotropic void evolution in deformed semi-crystalline polyamide 6 , 2016 .

[5]  H. Proudhon,et al.  3D Damage Micromechanisms in Polyamide 6 Ahead of a Severe Notch Studied by In Situ Synchrotron Laminography , 2016 .

[6]  W. Ludwig,et al.  Comparison of voiding mechanisms in semi-crystalline polyamide 6 during tensile and creep tests , 2016 .

[7]  K. Danas,et al.  A model for ductile damage prediction at low stress triaxialities incorporating void shape change and void rotation , 2015 .

[8]  Kacem Saï,et al.  Damage based constitutive relationships in semi-crystalline polymer by using multi-mechanisms model , 2013 .

[9]  E. Maire,et al.  Effect of Multiaxial Stress State on Morphology and Spatial Distribution of Voids in Deformed Semicrystalline Polymer Assessed by X-ray Tomography , 2012 .

[10]  C. Fond,et al.  Experimental investigations and modeling of volume change induced by void growth in polyamide 11 , 2011 .

[11]  G. Cailletaud,et al.  Multi-mechanism damage-plasticity model for semi-crystalline polymer: Creep damage of notched specimen of PA6 , 2011 .

[12]  H. Proudhon,et al.  Damage of semicrystalline polyamide 6 assessed by 3D X‐ray tomography: From microstructural evolution to constitutive modeling , 2010 .

[13]  A. Galeski,et al.  Cavitation and morphological changes in polypropylene deformed at elevated temperatures , 2010 .

[14]  J. Besson Damage of ductile materials deforming under multiple plastic or viscoplastic mechanisms , 2009 .

[15]  L. Laiarinandrasana,et al.  Multi-mechanism models for semi-crystalline polymer: Constitutive relations and finite element implementation , 2009 .

[16]  A. Galeski,et al.  Cavitation during Tensile Deformation of Polypropylene , 2008 .

[17]  M. Lafarge Modélisation couplée comportement-endommagement et critères de rupture dans le domaine de la transition du PVDF , 2004 .

[18]  Jean-Baptiste Leblond,et al.  Theoretical models for void coalescence in porous ductile solids. II. Coalescence “in columns” , 2001 .

[19]  Françoise Peyrin,et al.  Observation of microstructure and damage in materials by phase sensitive radiography and tomography , 1997 .

[20]  Jacques Besson,et al.  Large scale object-oriented finite element code design , 1997 .

[21]  Jean-Baptiste Leblond,et al.  Approximate models for ductile metals containing non-spherical voids—Case of axisymmetric prolate ellipsoidal cavities , 1993 .

[22]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[23]  F. Addiego,et al.  True intrinsic mechanical behaviour of semi-crystalline and amorphous polymers: Influences of volume deformation and cavities shape , 2013 .

[24]  Jacques Besson,et al.  An extension of the Green and Gurson models to kinematic hardening , 2003 .

[25]  J. Stoer Principles of Sequential Quadratic Programming Methods for Solving Nonlinear Programs , 1985 .

[26]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[27]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .