The role of the microbiome in cancer development and therapy

Answer questions and earn CME/CNE

[1]  Yunwei Wang,et al.  Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il 10 2 / 2 mice , 2012 .

[2]  F. Marincola,et al.  Commensal Bacteria Control Cancer Response to Therapy by Modulating the Tumor Microenvironment , 2013, Science.

[3]  N. Lemoine,et al.  CRISPR-Cas9 as a Powerful Tool for Efficient Creation of Oncolytic Viruses , 2016, Viruses.

[4]  Wendy S. Garrett,et al.  Cancer and the microbiota , 2015, Science.

[5]  A. Pircher,et al.  Treg(s) in Cancer: Friends or Foe? , 2015, Journal of cellular physiology.

[6]  U. Nöthlings,et al.  Genome-wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota , 2016, Nature Genetics.

[7]  A. Mira,et al.  Microbial mucosal colonic shifts associated with the development of colorectal cancer reveal the presence of different bacterial and archaeal biomarkers , 2015, Journal of Gastroenterology.

[8]  S. Panda,et al.  Fasting, Circadian Rhythms, and Time-Restricted Feeding in Healthy Lifespan. , 2016, Cell metabolism.

[9]  Ron Milo,et al.  Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans , 2016, Cell.

[10]  Paolo Chiodini,et al.  Metabolic Syndrome and Risk of Cancer , 2012, Diabetes Care.

[11]  P. Moayyedi,et al.  Frozen vs Fresh Fecal Microbiota Transplantation and Clinical Resolution of Diarrhea in Patients With Recurrent Clostridium difficile Infection: A Randomized Clinical Trial. , 2016, JAMA.

[12]  J. Doudna,et al.  The new frontier of genome engineering with CRISPR-Cas9 , 2014, Science.

[13]  Nitin Kumar,et al.  Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation , 2016, Nature.

[14]  Masahira Hattori,et al.  Obesity-induced gut microbial metabolite promotes liver cancer through senescence secretome , 2013, Nature.

[15]  D. Pezet,et al.  High Prevalence of Mucosa-Associated E. coli Producing Cyclomodulin and Genotoxin in Colon Cancer , 2013, PloS one.

[16]  Matthias Scholz,et al.  Metagenomic Sequencing with Strain-Level Resolution Implicates Uropathogenic E . coli in Necrotizing Enterocolitis and Mortality in Preterm Infants Graphical Abstract Highlights , 2017 .

[17]  E. Mardis,et al.  An obesity-associated gut microbiome with increased capacity for energy harvest , 2006, Nature.

[18]  G. Gloor,et al.  The Microbiota of Breast Tissue and Its Association with Breast Cancer , 2016, Applied and Environmental Microbiology.

[19]  Harry J. Flint,et al.  The gut microbiota, bacterial metabolites and colorectal cancer , 2014, Nature Reviews Microbiology.

[20]  M. Blaser,et al.  Caga-positive strains of Helicobacter pylori may protect against Barrett’s esophagus , 2000 .

[21]  C. Kelly,et al.  Weight Gain After Fecal Microbiota Transplantation , 2015, Open forum infectious diseases.

[22]  Lawrence A. David,et al.  Diet rapidly and reproducibly alters the human gut microbiome , 2013, Nature.

[23]  A. Rudensky,et al.  Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation , 2013, Nature.

[24]  I. Rowland,et al.  Diet and cancer: assessing the risk , 2002, British Journal of Nutrition.

[25]  A. Oguz,et al.  Association between Metabolic Syndrome and Cancer , 2016, Annals of Nutrition and Metabolism.

[26]  R. Knight,et al.  Dietary effects on human gut microbiome diversity , 2014, British Journal of Nutrition.

[27]  S. Massart,et al.  16S rRNA Gene Pyrosequencing Reveals Shift in Patient Faecal Microbiota During High-Dose Chemotherapy as Conditioning Regimen for Bone Marrow Transplantation , 2014, Microbial Ecology.

[28]  M. Vetizou,et al.  Fine-Tuning Cancer Immunotherapy: Optimizing the Gut Microbiome. , 2016, Cancer research.

[29]  S. Curley,et al.  A recellularized human colon model identifies cancer driver genes , 2016, Nature Biotechnology.

[30]  William A. Walters,et al.  Conducting a Microbiome Study , 2014, Cell.

[31]  L. Fulton,et al.  Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. , 2008, Cell host & microbe.

[32]  H. Bernstein,et al.  Bile acids as endogenous etiologic agents in gastrointestinal cancer. , 2009, World journal of gastroenterology.

[33]  H. Gaskins,et al.  Taurocholic acid metabolism by gut microbes and colon cancer , 2016, Gut microbes.

[34]  H. Fukamachi,et al.  Cloning and characterization of the L-cysteine desulfhydrase gene of Fusobacterium nucleatum. , 2002, FEMS microbiology letters.

[35]  R. Sandler,et al.  Fusobacterium Is Associated with Colorectal Adenomas , 2013, PloS one.

[36]  M. Mahfouz,et al.  Genome editing: the road of CRISPR/Cas9 from bench to clinic , 2016, Experimental & Molecular Medicine.

[37]  J. Ward,et al.  Gut bacteria require neutrophils to promote mammary tumorigenesis , 2015, Oncotarget.

[38]  P. Brigidi,et al.  Through Ageing, and Beyond: Gut Microbiota and Inflammatory Status in Seniors and Centenarians , 2010, PloS one.

[39]  Claudio Donati,et al.  MetaMLST: multi-locus strain-level bacterial typing from metagenomic samples , 2016, Nucleic acids research.

[40]  Yunwei Wang,et al.  Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10−/− mice , 2012, Nature.

[41]  B. Aggarwal,et al.  Cancer is a Preventable Disease that Requires Major Lifestyle Changes , 2008, Pharmaceutical Research.

[42]  P. Laurent-Puig [Genetic alterations in colorectal cancer]. , 1994, Annales de pathologie.

[43]  Toshio Uraoka,et al.  A Colorectal Tumor Organoid Library Demonstrates Progressive Loss of Niche Factor Requirements during Tumorigenesis. , 2016, Cell stem cell.

[44]  N. Maherali,et al.  Registered report: Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma , 2016, eLife.

[45]  A. Benson The gut microbiome—an emerging complex trait , 2016, Nature Genetics.

[46]  R. Bresalier,et al.  Gastrointestinal and Hepatic Complications of Immune Checkpoint Inhibitors , 2017, Current Gastroenterology Reports.

[47]  P. Schloss,et al.  The Human Gut Microbiome as a Screening Tool for Colorectal Cancer , 2014, Cancer Prevention Research.

[48]  M. Tomita,et al.  Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells , 2013, Nature.

[49]  Angela C. Poole,et al.  Human Genetics Shape the Gut Microbiome , 2014, Cell.

[50]  A. Neish,et al.  Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications. , 2012, Current medicinal chemistry.

[51]  W. Rabsch,et al.  Genetic Structure and Distribution of the Colibactin Genomic Island among Members of the Family Enterobacteriaceae , 2009, Infection and Immunity.

[52]  B. Damania,et al.  AKTivation of PI3K/AKT/mTOR signaling pathway by KSHV , 2013, Front. Immun..

[53]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[54]  J. Lampe,et al.  Gut microbes, diet, and cancer. , 2014, Cancer treatment and research.

[55]  Na-Ri Shin,et al.  Proteobacteria: microbial signature of dysbiosis in gut microbiota. , 2015, Trends in biotechnology.

[56]  L. Siegfried,et al.  [Cytolethal distending toxins]. , 2014, Epidemiologie, mikrobiologie, imunologie : casopis Spolecnosti pro epidemiologii a mikrobiologii Ceske lekarske spolecnosti J.E. Purkyne.

[57]  A. Viale,et al.  The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. , 2014, Blood.

[58]  S. Love,et al.  Characterization of the microbiome of nipple aspirate fluid of breast cancer survivors , 2016, Scientific Reports.

[59]  R. Barrangou,et al.  CRISPR-based screening of genomic island excision events in bacteria , 2015, Proceedings of the National Academy of Sciences.

[60]  S. Bultman The microbiome and its potential as a cancer preventive intervention. , 2016, Seminars in oncology.

[61]  B. Marshall,et al.  UNIDENTIFIED CURVED BACILLI IN THE STOMACH OF PATIENTS WITH GASTRITIS AND PEPTIC ULCERATION , 1984, The Lancet.

[62]  S. Bultman,et al.  Emerging roles of the microbiome in cancer. , 2014, Carcinogenesis.

[63]  Marcus J. Claesson,et al.  Composition, variability, and temporal stability of the intestinal microbiota of the elderly , 2010, Proceedings of the National Academy of Sciences.

[64]  M. Pop,et al.  Metagenomic Analysis of the Human Distal Gut Microbiome , 2006, Science.

[65]  W. Garrett,et al.  The Microbial Metabolites, Short-Chain Fatty Acids, Regulate Colonic Treg Cell Homeostasis , 2013, Science.

[66]  M. Blaser,et al.  Antibiotics in early life alter the murine colonic microbiome and adiposity , 2012, Nature.

[67]  P. Lance,et al.  Shifts in the Fecal Microbiota Associated with Adenomatous Polyps , 2016, Cancer Epidemiology, Biomarkers & Prevention.

[68]  Olivia I. Koues,et al.  The Colonic Crypt Protects Stem Cells from Microbiota-Derived Metabolites , 2016, Cell.

[69]  H. Kim,et al.  Impact of Pelvic Radiotherapy on Gut Microbiota of Gynecological Cancer Patients Revealed by Massive Pyrosequencing , 2013, PloS one.

[70]  Huidong Shi,et al.  Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. , 2014, Immunity.

[71]  Matthew R. Redinbo,et al.  Alleviating Cancer Drug Toxicity by Inhibiting a Bacterial Enzyme , 2010, Science.

[72]  Noam Harpaz,et al.  Diagnosis and management of dysplasia in patients with inflammatory bowel diseases. , 2004, Gastroenterology.

[73]  Vito Pistoia,et al.  Fasting Cycles Retard Growth of Tumors and Sensitize a Range of Cancer Cell Types to Chemotherapy , 2012, Science Translational Medicine.

[74]  G. Brandi,et al.  Intestinal microflora and digestive toxicity of irinotecan in mice. , 2006, Clinical cancer research : an official journal of the American Association for Cancer Research.

[75]  R. Knight,et al.  Development of the human gastrointestinal microbiota and insights from high-throughput sequencing. , 2011, Gastroenterology.

[76]  A. Fodor,et al.  Increased rectal microbial richness is associated with the presence of colorectal adenomas in humans , 2012, The ISME Journal.

[77]  M. B. Edlund,et al.  Production of volatile sulfur compounds by various Fusobacterium species. , 1990, Oral microbiology and immunology.

[78]  B. Birren,et al.  Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. , 2012, Genome research.

[79]  T. Vatanen,et al.  The effect of host genetics on the gut microbiome , 2016, Nature Genetics.

[80]  Eric J Feuer,et al.  Projections of the cost of cancer care in the United States: 2010-2020. , 2011, Journal of the National Cancer Institute.

[81]  P. Wilmes,et al.  A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility , 2016, Cell.

[82]  A. Jemal,et al.  Cancer statistics, 2016 , 2016, CA: a cancer journal for clinicians.

[83]  L. Cohen Diet and cancer , 1993, Nature.

[84]  F. Ginhoux,et al.  Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota , 2015, Science.

[85]  C. Mulder,et al.  Serendipity in Refractory Celiac Disease: Full Recovery of Duodenal Villi and Clinical Symptoms after Fecal Microbiota Transfer. , 2016, Journal of gastrointestinal and liver diseases : JGLD.

[86]  M. Bissonnette,et al.  Enteric bacterial protein AvrA promotes colonic tumorigenesis and activates colonic beta-catenin signaling pathway , 2014, Oncogenesis.

[87]  B. Göke,et al.  Fäkaler Mikrobiom-Transfer bei therapierefraktärem Diarrhoe-betontem Reizdarmsyndrom , 2015, DMW Deutsche Medizinische Wochenschrift.

[88]  Rebecca L. Siegel Mph,et al.  Cancer statistics, 2016 , 2016 .

[89]  J. Baron,et al.  Aspirin for the chemoprevention of colorectal adenomas: meta-analysis of the randomized trials. , 2009, Journal of the National Cancer Institute.

[90]  D. Sinderen,et al.  Gut microbiota composition correlates with diet and health in the elderly , 2012, Nature.

[91]  R. Sandler,et al.  Differences in microbial signatures between rectal mucosal biopsies and rectal swabs , 2012, Gut microbes.

[92]  R. Sandler,et al.  Altered Tissue Metabolites Correlate with Microbial Dysbiosis in Colorectal Adenomas , 2014, Journal of proteome research.

[93]  Dorothee Günzel,et al.  Annals of the New York Academy of Sciences Microbial Butyrate and Its Role for Barrier Function in the Gastrointestinal Tract , 2022 .

[94]  M. Redinbo,et al.  Molecular Insights into Microbial β-Glucuronidase Inhibition to Abrogate CPT-11 Toxicity , 2013, Molecular Pharmacology.

[95]  P. Bork,et al.  Enterotypes of the human gut microbiome , 2011, Nature.

[96]  J. Verweij,et al.  Prophylaxis of irinotecan-induced diarrhea with neomycin and potential role for UGT1A1*28 genotype screening: a double-blind, randomized, placebo-controlled study. , 2006, The oncologist.

[97]  B. Vogelstein,et al.  Variation in cancer risk among tissues can be explained by the number of stem cell divisions , 2015, Science.

[98]  Eric J Alm,et al.  Host lifestyle affects human microbiota on daily timescales , 2014, Genome Biology.

[99]  T. Dinan,et al.  Breaking down the barriers: the gut microbiome, intestinal permeability and stress-related psychiatric disorders , 2015, Front. Cell. Neurosci..

[100]  N. Dubrawsky Cancer statistics , 1989, CA: a cancer journal for clinicians.

[101]  E. Lander,et al.  Development and Applications of CRISPR-Cas 9 for Genome Engineering , 2015 .

[102]  D. Savage Microbial ecology of the gastrointestinal tract. , 1977, Annual review of microbiology.

[103]  M. Selbach,et al.  The Versatility of Helicobacter pylori CagA Effector Protein Functions: The Master Key Hypothesis , 2010, Helicobacter.

[104]  H. Gaskins,et al.  Commensal Bacteria, Redox Stress, and Colorectal Cancer: Mechanisms and Models , 2004, Experimental biology and medicine.

[105]  Daniel B. DiGiulio,et al.  Development of the Human Infant Intestinal Microbiota , 2007, PLoS biology.

[106]  Jason B. Williams,et al.  Commensal Bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy , 2015, Science.

[107]  D. Hattis,et al.  Cancer risk: Role of environment , 2015, Science.

[108]  J. Fox,et al.  Helicobacter hepaticus infection in mice: models for understanding lower bowel inflammation and cancer , 2010, Mucosal Immunology.

[109]  Hans Clevers,et al.  Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases , 2015, Proceedings of the National Academy of Sciences.

[110]  M. Dominguez-Bello,et al.  The infant microbiome development: mom matters. , 2015, Trends in molecular medicine.

[111]  F. Ryan,et al.  Tumour-associated and non-tumour-associated microbiota in colorectal cancer , 2016, Gut.

[112]  Gabriel A. Al-Ghalith,et al.  Chemotherapy‐driven dysbiosis in the intestinal microbiome , 2015, Alimentary pharmacology & therapeutics.

[113]  M. R. Rubinstein,et al.  Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. , 2013, Cell host & microbe.

[114]  Zaid Abdo,et al.  Molecular characterization of mucosal adherent bacteria and associations with colorectal adenomas , 2010, Gut microbes.

[115]  P. Turnbaugh,et al.  Microbial ecology: Human gut microbes associated with obesity , 2006, Nature.

[116]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[117]  Belgin Dogan,et al.  Intestinal Inflammation Targets Cancer-Inducing Activity of the Microbiota , 2012, Science.

[118]  J. Lambeth,et al.  Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox‐mediated generation of reactive oxygen species , 2013, The EMBO journal.

[119]  C. Huttenhower,et al.  Intestinal microbiome analyses identify melanoma patients at risk for checkpoint-blockade-induced colitis , 2016, Nature Communications.

[120]  Huanzi Zhong,et al.  Fecal Microbiota Characteristics of Patients with Colorectal Adenoma Detected by Screening: A Population-based Study , 2015, EBioMedicine.

[121]  M. Thun,et al.  Aspirin and non-steroidal anti-inflammatory drugs for cancer prevention: an international consensus statement. , 2009, The Lancet. Oncology.

[122]  M. Vetizou,et al.  Resistance Mechanisms to Immune-Checkpoint Blockade in Cancer: Tumor-Intrinsic and -Extrinsic Factors. , 2016, Immunity.

[123]  Ting Wang,et al.  The gut microbiota as an environmental factor that regulates fat storage. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[124]  E. Lander,et al.  Development and Applications of CRISPR-Cas9 for Genome Engineering , 2014, Cell.

[125]  Eric Vivier,et al.  The Intestinal Microbiota Modulates the Anticancer Immune Effects of Cyclophosphamide , 2013, Science.

[126]  A. Lin,et al.  FOXAI: a phase II trial evaluating the efficacy and safety of hepatic arterial infusion of oxaliplatin plus fluorouracil/leucovorin for advanced hepatocellular carcinoma , 2017, Gut.

[127]  Asad A. Ahmad,et al.  In Vitro Polarization of Colonoids to Create an Intestinal Stem Cell Compartment , 2016, PloS one.

[128]  S. Frye,et al.  Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. , 2015, Chemistry & biology.

[129]  W. R. Wikoff,et al.  Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites , 2009, Proceedings of the National Academy of Sciences.

[130]  T. Weir,et al.  Crosstalk between Microbiota-Derived Short-Chain Fatty Acids and Intestinal Epithelial HIF Augments Tissue Barrier Function. , 2015, Cell host & microbe.

[131]  Edward W. Lee,et al.  Microbiome Analysis of Stool Samples from African Americans with Colon Polyps , 2013, PloS one.

[132]  G. Trinchieri,et al.  Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection. , 2005, Cancer research.

[133]  R. Sartor,et al.  Resident Enteric Bacteria Are Necessary for Development of Spontaneous Colitis and Immune System Activation in Interleukin-10-Deficient Mice , 1998, Infection and Immunity.

[134]  K. Orgel,et al.  Intestinal bacteria are necessary for doxorubicin-induced intestinal damage but not for doxorubicin-induced apoptosis , 2016, Gut microbes.

[135]  V. Godfrey,et al.  A gnotobiotic mouse model demonstrates that dietary fiber protects against colorectal tumorigenesis in a microbiota- and butyrate-dependent manner. , 2014, Cancer discovery.

[136]  A. Dyer,et al.  Colorectal cancer mortality and factors related to the insulin resistance syndrome. , 2002, Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology.

[137]  Carmen Buchrieser,et al.  Escherichia coli Induces DNA Double-Strand Breaks in Eukaryotic Cells , 2006, Science.

[138]  Curtis Huttenhower,et al.  Chapter 12: Human Microbiome Analysis , 2012, PLoS Comput. Biol..

[139]  Cynthia L Sears,et al.  A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses , 2009, Nature Medicine.

[140]  A. Morris,et al.  Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions , 2015, BDJ.

[141]  Mark M Huycke,et al.  Enterococcus faecalis produces extracellular superoxide and hydrogen peroxide that damages colonic epithelial cell DNA. , 2002, Carcinogenesis.

[142]  M. Blaser,et al.  Antibiotics in early life and obesity , 2015, Nature Reviews Endocrinology.

[143]  Dan R. Littman,et al.  Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria , 2009, Cell.

[144]  M. Loda,et al.  The fat side of prostate cancer. , 2013, Biochimica et biophysica acta.

[145]  George M. Weinstock,et al.  Genomic approaches to studying the human microbiota , 2012, Nature.

[146]  R. Knight,et al.  Diversity, stability and resilience of the human gut microbiota , 2012, Nature.

[147]  H. Herfarth,et al.  Modulation of the Intestinal Microbiota Alters Colitis-Associated Colorectal Cancer Susceptibility , 2009, PloS one.

[148]  Richard A. Moore,et al.  Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. , 2012, Genome research.

[149]  G. Rabinovich,et al.  Microbially driven TLR5-dependent signaling governs distal malignant progression through tumor-promoting inflammation. , 2015, Cancer cell.

[150]  K. Kinzler,et al.  Microbiota organization is a distinct feature of proximal colorectal cancers , 2014, Proceedings of the National Academy of Sciences.

[151]  R. Knight,et al.  Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns , 2010, Proceedings of the National Academy of Sciences.

[152]  P. Woster,et al.  Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis , 2011, Proceedings of the National Academy of Sciences.

[153]  C. Sears,et al.  Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[154]  T. Cover,et al.  Helicobacter pylori VacA Disrupts Apical Membrane-Cytoskeletal Interactions in Gastric Parietal Cells* , 2008, Journal of Biological Chemistry.

[155]  S. Mehrotra,et al.  Th17 Cells in Cancer: The Ultimate Identity Crisis , 2014, Front. Immunol..

[156]  Liping Zhao The gut microbiota and obesity: from correlation to causality , 2013, Nature Reviews Microbiology.

[157]  Biological agents. Volume 100 B. A review of human carcinogens. , 2012, IARC monographs on the evaluation of carcinogenic risks to humans.

[158]  A. Stringer,et al.  Biomarkers of chemotherapy-induced diarrhoea: a clinical study of intestinal microbiome alterations, inflammation and circulating matrix metalloproteinases , 2013, Supportive Care in Cancer.

[159]  W. Tissing,et al.  Chemotherapy treatment in pediatric patients with acute myeloid leukemia receiving antimicrobial prophylaxis leads to a relative increase of colonization with potentially pathogenic bacteria in the gut. , 2009, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[160]  P. Rosenstiel,et al.  Enterococcus hirae and Barnesiella intestinihominis Facilitate Cyclophosphamide-Induced Therapeutic Immunomodulatory Effects. , 2016, Immunity.