Non-linear supersymmetry and T (cid:22) T -like (cid:13)ows
暂无分享,去创建一个
[1] Callum R. T. Jones,et al. All-multiplicity one-loop amplitudes in Born-Infeld electrodynamics from generalized unitarity , 2019, Journal of High Energy Physics.
[2] A. Sfondrini,et al. TT¯ flows and (2, 2) supersymmetry , 2019, Physical Review D.
[3] A. Sfondrini,et al. On TT¯ deformations and supersymmetry , 2019 .
[4] S. Frolov. TTbar deformation and the light-cone gauge , 2019, 1905.07946.
[5] Yunfeng Jiang. Lectures on solvable irrelevant deformations of 2d quantum field theory , 2019, 1904.13376.
[6] I. Antoniadis,et al. $$ \mathcal{N} $$ = 2 supersymmetry deformations, electromagnetic duality and Dirac-Born-Infeld actions , 2019, Journal of High Energy Physics.
[7] A. Sfondrini,et al. TT¯ deformations with N=(0,2) supersymmetry , 2019, Physical Review D.
[8] S. Datta,et al. Sphere partition functions & cut-off AdS , 2019, Journal of High Energy Physics.
[9] Thomas Hartman,et al. Holography at finite cutoff with a T2 deformation , 2018, Journal of High Energy Physics.
[10] S. Sethi,et al. Supersymmetry and T T deformations , 2019 .
[11] D. Freedman,et al. T (cid:22) T -deformed actions and (1,1) supersymmetry , 2019 .
[12] S. Dubovsky,et al. Undressing confining flux tubes with TT¯ , 2018, Physical Review D.
[13] A. Sfondrini,et al. Integrable spin chain for stringy Wess-Zumino-Witten models , 2018, Journal of High Energy Physics.
[14] A. Sfondrini,et al. Strings on NS-NS backgrounds as integrable deformations , 2018, Physical Review D.
[15] C. Cheung,et al. Vector Effective Field Theories from Soft Limits. , 2018, Physical review letters.
[16] J. Cardy. The T T deformation of quantum field theory as random geometry , 2018 .
[17] G. Bonelli,et al. T ¯ T -deformations in closed form , 2018 .
[18] J. Schwarz,et al. M5-brane and D-brane scattering amplitudes , 2017, 1710.02170.
[19] M. R. Garousi. Duality constraints on effective actions , 2017, 1702.00191.
[20] F. A. Smirnov,et al. On space of integrable quantum field theories , 2016, 1608.05499.
[21] D. Arnold,et al. Gauge coupling field, currents, anomalies and N=1 super-Yang–Mills effective actions , 2016, 1607.08646.
[22] S. Dubovsky,et al. Asymptotic fragility, near AdS 2 holography and T (cid:22) T , 2017 .
[23] I. Antoniadis,et al. Nonlinear N = 2 global supersymmetry , 2017 .
[24] Rikard von Unge,et al. Superspace higher derivative terms in two dimensions , 2016, 1612.04361.
[25] R. Kallosh. Nonlinear (super)symmetries and amplitudes , 2016, 1609.09123.
[26] R. Kallosh,et al. Origin of soft limits from nonlinear supersymmetry in Volkov-Akulov theory , 2016, 1609.09127.
[27] G. Dall’Agata,et al. Interactions of N Goldstini in Superspace , 2016, 1607.01277.
[28] S. Kuzenko,et al. Nilpotent chiral superfield in N = 2 supergravity and partial rigid supersymmetry breaking , 2016 .
[29] R. Tateo,et al. T T-deformed 2D quantum eld theories , 2016 .
[30] Wei-ming Chen,et al. Exact coefficients for higher dimensional operators with sixteen supersymmetries , 2015, 1505.07093.
[31] Y. Wang,et al. Higher derivative couplings in theories with sixteen supersymmetries , 2015, 1503.02077.
[32] C. Cheung,et al. Effective Field Theories from Soft Limits of Scattering Amplitudes. , 2014, Physical review letters.
[33] S. Dubovsky,et al. Natural tuning: towards a proof of concept , 2013, 1305.6939.
[34] F. Gliozzi,et al. Quantisation of the effective string with TBA , 2013, 1305.1278.
[35] R. Kallosh,et al. Dirac-Born-Infeld-Volkov-Akulov and deformation of supersymmetry , 2013, 1303.5662.
[36] R. Flauger,et al. Solving the simplest theory of quantum gravity , 2012, 1205.6805.
[37] Nathan Seiberg,et al. Supercurrents and brane currents in diverse dimensions , 2011, 1106.0031.
[38] Simon J. Tyler,et al. On the Goldstino actions and their symmetries , 2011, 1102.3043.
[39] Simon J. Tyler,et al. Relating the KomargodskiSeiberg and AkulovVolkov actions: Exact nonlinear field redefinition , 2010, 1009.3298.
[40] S. Kuzenko. Variant supercurrent multiplets , 2010, 1002.4932.
[41] N. Seiberg,et al. Comments on supercurrent multiplets, supersymmetric field theories and supergravity , 2010, 1002.2228.
[42] S. Kuzenko. Fayet-Iliopoulos term and nonlinear self-duality , 2009, 0911.5190.
[43] K. Dienes,et al. On the inconsistency of Fayet-Iliopoulos terms in supergravity theories , 2009, 0911.0677.
[44] N. Seiberg,et al. From Linear SUSY to Constrained Superfields , 2009, 0907.2441.
[45] M. Roček,et al. Generalized Kähler Manifolds and Off-shell Supersymmetry , 2005, hep-th/0512164.
[46] E. Ivanov,et al. Diverse N=(4,4) Twisted Multiplets in the N=(2,2) Superspace , 2004, hep-th/0409236.
[47] S. Kuzenko,et al. On the component structure ofN = 1 supersymmetric nonlinear electrodynamics , 2005 .
[48] A. Zamolodchikov. Expectation value of composite field $T{\bar T}$ in two-dimensional quantum field theory , 2004, hep-th/0401146.
[49] S. Ketov,et al. On the universality of Goldstino action , 2003, hep-th/0310152.
[50] E. Ivanov,et al. New approach to nonlinear electrodynamics: Dualities as symmetries of interaction , 2003, hep-th/0303192.
[51] N. Berkovits,et al. Supersymmetric Born-Infeld from the pure spinor formalism of the open superstring , 2002, hep-th/0205154.
[52] S. Kerstan. Supersymmetric Born–Infeld from the D9-brane , 2002, hep-th/0204225.
[53] E. Ivanov,et al. New representation for Lagrangians of self-dual nonlinear electrodynamics , 2002, hep-th/0202203.
[54] S. Ketov. Many faces of Born-Infeld theory , 2001, hep-th/0108189.
[55] E. Ivanov. Superbranes and Super Born–Infeld Theories as Nonlinear Realizations , 2001, hep-th/0103136.
[56] S. Bellucci,et al. Towards the complete N=2 superfield Born-Infeld action with partially broken N=4 supersymmetry , 2001, hep-th/0101195.
[57] S. Bellucci,et al. N=2 and N=4 supersymmetric Born–Infeld theories from nonlinear realizations , 2000, hep-th/0012236.
[58] O. Lechtenfeld,et al. Partial spontaneous breaking of two-dimensional supersymmetry , 2000, hep-th/0012199.
[59] S. Ketov. N = 2 super-Born-Infeld theory revisited , 2000, hep-th/0005126.
[60] S. Theisen,et al. Supersymmetric duality rotations , 2000, hep-th/0001068.
[61] S. Theisen,et al. Nonlinear selfduality and supersymmetry , 2000 .
[62] A. Tseytlin. Born-Infeld action, supersymmetry and string theory , 1999, hep-th/9908105.
[63] M. Roček,et al. Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions , 1998, hep-th/9811232.
[64] M. Roček,et al. On dual 3-brane actions with partially broken N = 2 supersymmetry , 1998, hep-th/9811130.
[65] S. Ketov. A MANIFESTLY N=2 SUPERSYMMETRIC BORN–INFELD ACTION , 1998, hep-th/9809121.
[66] S. Paban,et al. Supersymmetry and higher derivative terms in the effective action of Yang-Mills theories , 1998, hep-th/9806028.
[67] S. Paban,et al. Constraints from extended supersymmetry in quantum mechanics , 1998, hep-th/9805018.
[68] S. Gates,et al. 2D (4,4) Hypermultiplets (II): Field theory origins of dualities 1 Supported in part by the `Deutsch , 1998 .
[69] E. Ivanov,et al. Modifying N=2 Supersymmetry via Partial Breaking , 1998, hep-th/9801016.
[70] J. Bagger,et al. The tensor Goldstone multiplet for partially broken supersymmetry , 1997, hep-th/9707061.
[71] M. Grisaru,et al. The quantum geometry of N = (2,2) non-linear σ-models , 1997, hep-th/9706218.
[72] D. Rasheed. Non-Linear Electrodynamics: Zeroth and First Laws of Black Hole Mechanics , 1997, hep-th/9702087.
[73] J. Bagger,et al. New Goldstone multiplet for partially broken supersymmetry , 1996, hep-th/9608177.
[74] I. Antoniadis,et al. Spontaneous breaking of N = 2 global supersymmetry , 1995, hep-th/9512006.
[75] R. Gatto,et al. Non-Linear realization of supersymmetry algebra from supersymmetric constraint , 1989 .
[76] Ulf Lindström,et al. New supersymmetric σ-models with Wess-Zumino terms , 1988 .
[77] R. R. Metsaev,et al. Fermionic terms in the open superstring effective action , 1987 .
[78] A. Tseytlin,et al. The {Born-Infeld} Action as the Effective Action in the Open Superstring Theory , 1987 .
[79] S. Ferrara,et al. Supersymmetric born-infeld lagrangians , 1987 .
[80] E. Sezgin,et al. HIGHER DERIVATIVE SUPER YANG-MILLS THEORIES , 1987 .
[81] E. Ivanov,et al. N=4 superextension of the Liouville equation with quaternion structure , 1985 .
[82] Christopher M. Hull,et al. Twisted multiplets and new supersymmetric non-linear σ-models☆☆☆★ , 1984 .
[83] S. Gates,et al. Superspace or One Thousand and One Lessons in Supersymmetry , 1983, hep-th/0108200.
[84] M. Waldrop. Supersymmetry and supergravity. , 1983, Science.
[85] S. Gates,et al. Auxiliary-field anomalies , 1982 .
[86] S. Deser,et al. Supersymmetric non-polynomial vector multiplets and causal propagation , 1980 .
[87] M. Roček. Linearizing the Volkov-Akulov model , 1978 .
[88] B. Zumino,et al. Transformation properties of the supercurrent , 1975 .
[89] D. Volkov,et al. Is the Neutrino a Goldstone Particle , 1973 .