Non-linear supersymmetry and T (cid:22) T -like (cid:13)ows

: The T (cid:22) T deformation of a supersymmetric two-dimensional theory preserves the original supersymmetry. Moreover, in several interesting cases the deformed theory possesses additional non-linearly realized supersymmetries. We show this for certain N = (2 ; 2) models in two dimensions, where we observe an intriguing similarity with known N = 1 models in four dimensions. This suggests that higher-dimensional models with non-linearly realized supersymmetries might also be obtained from T (cid:22) T -like (cid:13)ow equations. We show that in four dimensions this is indeed the case for N = 1 Born-Infeld theory, as well as for the Goldstino action for spontaneously broken N = 1 supersymmetry

[1]  Callum R. T. Jones,et al.  All-multiplicity one-loop amplitudes in Born-Infeld electrodynamics from generalized unitarity , 2019, Journal of High Energy Physics.

[2]  A. Sfondrini,et al.  TT¯ flows and (2, 2) supersymmetry , 2019, Physical Review D.

[3]  A. Sfondrini,et al.  On TT¯ deformations and supersymmetry , 2019 .

[4]  S. Frolov TTbar deformation and the light-cone gauge , 2019, 1905.07946.

[5]  Yunfeng Jiang Lectures on solvable irrelevant deformations of 2d quantum field theory , 2019, 1904.13376.

[6]  I. Antoniadis,et al.  $$ \mathcal{N} $$ = 2 supersymmetry deformations, electromagnetic duality and Dirac-Born-Infeld actions , 2019, Journal of High Energy Physics.

[7]  A. Sfondrini,et al.  TT¯ deformations with N=(0,2) supersymmetry , 2019, Physical Review D.

[8]  S. Datta,et al.  Sphere partition functions & cut-off AdS , 2019, Journal of High Energy Physics.

[9]  Thomas Hartman,et al.  Holography at finite cutoff with a T2 deformation , 2018, Journal of High Energy Physics.

[10]  S. Sethi,et al.  Supersymmetry and T T deformations , 2019 .

[11]  D. Freedman,et al.  T (cid:22) T -deformed actions and (1,1) supersymmetry , 2019 .

[12]  S. Dubovsky,et al.  Undressing confining flux tubes with TT¯ , 2018, Physical Review D.

[13]  A. Sfondrini,et al.  Integrable spin chain for stringy Wess-Zumino-Witten models , 2018, Journal of High Energy Physics.

[14]  A. Sfondrini,et al.  Strings on NS-NS backgrounds as integrable deformations , 2018, Physical Review D.

[15]  C. Cheung,et al.  Vector Effective Field Theories from Soft Limits. , 2018, Physical review letters.

[16]  J. Cardy The T T deformation of quantum field theory as random geometry , 2018 .

[17]  G. Bonelli,et al.  T ¯ T -deformations in closed form , 2018 .

[18]  J. Schwarz,et al.  M5-brane and D-brane scattering amplitudes , 2017, 1710.02170.

[19]  M. R. Garousi Duality constraints on effective actions , 2017, 1702.00191.

[20]  F. A. Smirnov,et al.  On space of integrable quantum field theories , 2016, 1608.05499.

[21]  D. Arnold,et al.  Gauge coupling field, currents, anomalies and N=1 super-Yang–Mills effective actions , 2016, 1607.08646.

[22]  S. Dubovsky,et al.  Asymptotic fragility, near AdS 2 holography and T (cid:22) T , 2017 .

[23]  I. Antoniadis,et al.  Nonlinear N = 2 global supersymmetry , 2017 .

[24]  Rikard von Unge,et al.  Superspace higher derivative terms in two dimensions , 2016, 1612.04361.

[25]  R. Kallosh Nonlinear (super)symmetries and amplitudes , 2016, 1609.09123.

[26]  R. Kallosh,et al.  Origin of soft limits from nonlinear supersymmetry in Volkov-Akulov theory , 2016, 1609.09127.

[27]  G. Dall’Agata,et al.  Interactions of N Goldstini in Superspace , 2016, 1607.01277.

[28]  S. Kuzenko,et al.  Nilpotent chiral superfield in N = 2 supergravity and partial rigid supersymmetry breaking , 2016 .

[29]  R. Tateo,et al.  T T-deformed 2D quantum eld theories , 2016 .

[30]  Wei-ming Chen,et al.  Exact coefficients for higher dimensional operators with sixteen supersymmetries , 2015, 1505.07093.

[31]  Y. Wang,et al.  Higher derivative couplings in theories with sixteen supersymmetries , 2015, 1503.02077.

[32]  C. Cheung,et al.  Effective Field Theories from Soft Limits of Scattering Amplitudes. , 2014, Physical review letters.

[33]  S. Dubovsky,et al.  Natural tuning: towards a proof of concept , 2013, 1305.6939.

[34]  F. Gliozzi,et al.  Quantisation of the effective string with TBA , 2013, 1305.1278.

[35]  R. Kallosh,et al.  Dirac-Born-Infeld-Volkov-Akulov and deformation of supersymmetry , 2013, 1303.5662.

[36]  R. Flauger,et al.  Solving the simplest theory of quantum gravity , 2012, 1205.6805.

[37]  Nathan Seiberg,et al.  Supercurrents and brane currents in diverse dimensions , 2011, 1106.0031.

[38]  Simon J. Tyler,et al.  On the Goldstino actions and their symmetries , 2011, 1102.3043.

[39]  Simon J. Tyler,et al.  Relating the KomargodskiSeiberg and AkulovVolkov actions: Exact nonlinear field redefinition , 2010, 1009.3298.

[40]  S. Kuzenko Variant supercurrent multiplets , 2010, 1002.4932.

[41]  N. Seiberg,et al.  Comments on supercurrent multiplets, supersymmetric field theories and supergravity , 2010, 1002.2228.

[42]  S. Kuzenko Fayet-Iliopoulos term and nonlinear self-duality , 2009, 0911.5190.

[43]  K. Dienes,et al.  On the inconsistency of Fayet-Iliopoulos terms in supergravity theories , 2009, 0911.0677.

[44]  N. Seiberg,et al.  From Linear SUSY to Constrained Superfields , 2009, 0907.2441.

[45]  M. Roček,et al.  Generalized Kähler Manifolds and Off-shell Supersymmetry , 2005, hep-th/0512164.

[46]  E. Ivanov,et al.  Diverse N=(4,4) Twisted Multiplets in the N=(2,2) Superspace , 2004, hep-th/0409236.

[47]  S. Kuzenko,et al.  On the component structure ofN = 1 supersymmetric nonlinear electrodynamics , 2005 .

[48]  A. Zamolodchikov Expectation value of composite field $T{\bar T}$ in two-dimensional quantum field theory , 2004, hep-th/0401146.

[49]  S. Ketov,et al.  On the universality of Goldstino action , 2003, hep-th/0310152.

[50]  E. Ivanov,et al.  New approach to nonlinear electrodynamics: Dualities as symmetries of interaction , 2003, hep-th/0303192.

[51]  N. Berkovits,et al.  Supersymmetric Born-Infeld from the pure spinor formalism of the open superstring , 2002, hep-th/0205154.

[52]  S. Kerstan Supersymmetric Born–Infeld from the D9-brane , 2002, hep-th/0204225.

[53]  E. Ivanov,et al.  New representation for Lagrangians of self-dual nonlinear electrodynamics , 2002, hep-th/0202203.

[54]  S. Ketov Many faces of Born-Infeld theory , 2001, hep-th/0108189.

[55]  E. Ivanov Superbranes and Super Born–Infeld Theories as Nonlinear Realizations , 2001, hep-th/0103136.

[56]  S. Bellucci,et al.  Towards the complete N=2 superfield Born-Infeld action with partially broken N=4 supersymmetry , 2001, hep-th/0101195.

[57]  S. Bellucci,et al.  N=2 and N=4 supersymmetric Born–Infeld theories from nonlinear realizations , 2000, hep-th/0012236.

[58]  O. Lechtenfeld,et al.  Partial spontaneous breaking of two-dimensional supersymmetry , 2000, hep-th/0012199.

[59]  S. Ketov N = 2 super-Born-Infeld theory revisited , 2000, hep-th/0005126.

[60]  S. Theisen,et al.  Supersymmetric duality rotations , 2000, hep-th/0001068.

[61]  S. Theisen,et al.  Nonlinear selfduality and supersymmetry , 2000 .

[62]  A. Tseytlin Born-Infeld action, supersymmetry and string theory , 1999, hep-th/9908105.

[63]  M. Roček,et al.  Partial breaking of global D = 4 supersymmetry, constrained superfields, and three-brane actions , 1998, hep-th/9811232.

[64]  M. Roček,et al.  On dual 3-brane actions with partially broken N = 2 supersymmetry , 1998, hep-th/9811130.

[65]  S. Ketov A MANIFESTLY N=2 SUPERSYMMETRIC BORN–INFELD ACTION , 1998, hep-th/9809121.

[66]  S. Paban,et al.  Supersymmetry and higher derivative terms in the effective action of Yang-Mills theories , 1998, hep-th/9806028.

[67]  S. Paban,et al.  Constraints from extended supersymmetry in quantum mechanics , 1998, hep-th/9805018.

[68]  S. Gates,et al.  2D (4,4) Hypermultiplets (II): Field theory origins of dualities 1 Supported in part by the `Deutsch , 1998 .

[69]  E. Ivanov,et al.  Modifying N=2 Supersymmetry via Partial Breaking , 1998, hep-th/9801016.

[70]  J. Bagger,et al.  The tensor Goldstone multiplet for partially broken supersymmetry , 1997, hep-th/9707061.

[71]  M. Grisaru,et al.  The quantum geometry of N = (2,2) non-linear σ-models , 1997, hep-th/9706218.

[72]  D. Rasheed Non-Linear Electrodynamics: Zeroth and First Laws of Black Hole Mechanics , 1997, hep-th/9702087.

[73]  J. Bagger,et al.  New Goldstone multiplet for partially broken supersymmetry , 1996, hep-th/9608177.

[74]  I. Antoniadis,et al.  Spontaneous breaking of N = 2 global supersymmetry , 1995, hep-th/9512006.

[75]  R. Gatto,et al.  Non-Linear realization of supersymmetry algebra from supersymmetric constraint , 1989 .

[76]  Ulf Lindström,et al.  New supersymmetric σ-models with Wess-Zumino terms , 1988 .

[77]  R. R. Metsaev,et al.  Fermionic terms in the open superstring effective action , 1987 .

[78]  A. Tseytlin,et al.  The {Born-Infeld} Action as the Effective Action in the Open Superstring Theory , 1987 .

[79]  S. Ferrara,et al.  Supersymmetric born-infeld lagrangians , 1987 .

[80]  E. Sezgin,et al.  HIGHER DERIVATIVE SUPER YANG-MILLS THEORIES , 1987 .

[81]  E. Ivanov,et al.  N=4 superextension of the Liouville equation with quaternion structure , 1985 .

[82]  Christopher M. Hull,et al.  Twisted multiplets and new supersymmetric non-linear σ-models☆☆☆★ , 1984 .

[83]  S. Gates,et al.  Superspace or One Thousand and One Lessons in Supersymmetry , 1983, hep-th/0108200.

[84]  M. Waldrop Supersymmetry and supergravity. , 1983, Science.

[85]  S. Gates,et al.  Auxiliary-field anomalies , 1982 .

[86]  S. Deser,et al.  Supersymmetric non-polynomial vector multiplets and causal propagation , 1980 .

[87]  M. Roček Linearizing the Volkov-Akulov model , 1978 .

[88]  B. Zumino,et al.  Transformation properties of the supercurrent , 1975 .

[89]  D. Volkov,et al.  Is the Neutrino a Goldstone Particle , 1973 .