Interlayer sensitized van der Waals heterojunction photodetector with enhanced performance

[1]  Weida Hu,et al.  Fully Depleted Self‐Aligned Heterosandwiched Van Der Waals Photodetectors , 2022, Advanced materials.

[2]  Jiayue Han,et al.  Recent Progress in 2D Inorganic/Organic Charge Transfer Heterojunction Photodetectors , 2022, Advanced Functional Materials.

[3]  Wenping Hu,et al.  2D-polyimide film sensitized monolayer MoS2 phototransistor enabled near-infrared photodetection , 2022, Nano Research.

[4]  Zhihao Yu,et al.  MoS2/WSe2 vdW Heterostructures Decorated with PbS Quantum Dots for the Development of High-Performance Photovoltaic and Broadband Photodiodes. , 2022, ACS nano.

[5]  J. Ho,et al.  Highly Efficient Full van der Waals 1D p‐Te/2D n‐Bi2O2Se Heterodiodes with Nanoscale Ultra‐Photosensitive Channels , 2022, Advanced Functional Materials.

[6]  D. van Thourhout,et al.  Chip-integrated van der Waals PN heterojunction photodetector with low dark current and high responsivity , 2022, Light, science & applications.

[7]  J. Liou,et al.  Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility , 2022, Nano-Micro Letters.

[8]  Qiyuan He,et al.  Infrared Photodetectors Based on 2D Materials and Nanophotonics , 2021, Advanced Functional Materials.

[9]  T. Zhai,et al.  2D Cu9S5/PtS2/WSe2 Double Heterojunction Bipolar Transistor with High Current Gain , 2021, Advanced materials.

[10]  W. Luo,et al.  Hybrid System Combining Two-Dimensional Materials and Ferroelectrics and Its Application in Photodetection. , 2021, ACS nano.

[11]  Feng Zhang,et al.  Repression of Interlayer Recombination by Graphene Generates a Sensitive Nanostructured 2D vdW Heterostructure Based Photodetector , 2021, Advanced science.

[12]  D. Beljonne,et al.  Molecular Doping of 2D Indium Selenide for Ultrahigh Performance and Low‐Power Consumption Broadband Photodetectors , 2021, Advanced Functional Materials.

[13]  K. Crozier,et al.  Light–Matter Interaction Enhancement in Anisotropic 2D Black Phosphorus via Polarization-Tailoring Nano-Optics , 2021 .

[14]  O. Hess,et al.  Gate-Tunable Plasmon-Enhanced Photodetection in a Monolayer MoS2 Phototransistor with Ultrahigh Photoresponsivity. , 2021, Nano letters.

[15]  Xianfu Wang,et al.  Ultrabroadband Photodetectors up to 10.6 µm Based on 2D Fe3O4 Nanosheets , 2020, Advanced materials.

[16]  Yang Wang,et al.  Two‐dimensional heterostructure promoted infrared photodetection devices , 2019, InfoMat.

[17]  A. Rogalski,et al.  Type-II superlattice photodetectors versus HgCdTe photodiodes , 2019, Remote Sensing.

[18]  T. Zhai,et al.  PbSe Quantum Dots Sensitized High-Mobility Bi2O2Se Nanosheets for High-Performance and Broadband Photodetection Beyond 2 Micrometers. , 2019, ACS nano.

[19]  Qiang Li,et al.  Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications , 2019, Advanced Optical Materials.

[20]  Jong‐Soo Lee,et al.  High-Performance Hybrid InP QDs/Black Phosphorus Photodetector. , 2019, ACS applied materials & interfaces.

[21]  J. Cho,et al.  Photogating in Graphene-Dye-Graphene Sandwich Heterostructure. , 2019, ACS applied materials & interfaces.

[22]  G. Ramos‐Ortiz,et al.  Role of carbon nanodots in defect passivation and photo-sensitization of mesoscopic-TiO2 for perovskite solar cells , 2019, Carbon.

[23]  J. Ho,et al.  Perovskite/Black Phosphorus/MoS2 Photogate Reversed Photodiodes with Ultrahigh Light On/Off Ratio and Fast Response. , 2019, ACS nano.

[24]  Limin Tong,et al.  High‐Speed and High‐Responsivity Hybrid Silicon/Black‐Phosphorus Waveguide Photodetectors at 2 µm , 2018, Laser & Photonics Reviews.

[25]  Hongwei Zhu,et al.  The Interaction between Quantum Dots and Graphene: The Applications in Graphene‐Based Solar Cells and Photodetectors , 2018, Advanced Functional Materials.

[26]  Guofeng Yang,et al.  Enhanced photoresponse of monolayer molybdenum disulfide (MoS2) based on microcavity structure , 2018 .

[27]  J. Eom,et al.  Temperature-Dependent and Gate-Tunable Rectification in a Black Phosphorus/WS2 van der Waals Heterojunction Diode. , 2018, ACS applied materials & interfaces.

[28]  David-Wei Zhang,et al.  High Performance Amplifier Element Realization via MoS2/GaTe Heterostructures , 2018, Advanced science.

[29]  Zhihao Yu,et al.  Analyzing the Carrier Mobility in Transition‐Metal Dichalcogenide MoS2 Field‐Effect Transistors , 2017, 1701.02079.

[30]  P. Hu,et al.  Effects of Organic Molecules with Different Structures and Absorption Bandwidth on Modulating Photoresponse of MoS2 Photodetector. , 2016, ACS applied materials & interfaces.

[31]  Shanhui Fan,et al.  Broadband Absorption Enhancement in Solar Cells with an Atomically Thin Active Layer , 2016 .

[32]  Kai Xu,et al.  Tunable GaTe-MoS2 van der Waals p-n Junctions with Novel Optoelectronic Performance. , 2015, Nano letters.

[33]  Nathan Youngblood,et al.  Waveguide-integrated black phosphorus photodetector with high responsivity and low dark current , 2014, Nature Photonics.

[34]  P. Avouris,et al.  Photodetectors based on graphene, other two-dimensional materials and hybrid systems. , 2014, Nature nanotechnology.

[35]  Jiwon Jeon,et al.  Dye-sensitized MoS2 photodetector with enhanced spectral photoresponse. , 2014, ACS nano.

[36]  Kenneth L. Shepard,et al.  Chip-integrated ultrafast graphene photodetector with high responsivity , 2013, Nature Photonics.

[37]  G. Lozano,et al.  Coherent and broadband enhanced optical absorption in graphene. , 2013, ACS nano.

[38]  Feng Yan,et al.  Infrared Photodetectors Based on CVD‐Grown Graphene and PbS Quantum Dots with Ultrahigh Responsivity , 2012, Advanced materials.

[39]  S. Koester,et al.  Optical absorption in graphene integrated on silicon waveguides , 2012, 1205.4050.

[40]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[41]  P. Klang,et al.  Microcavity-Integrated Graphene Photodetector , 2011, Nano letters.

[42]  X. Duan,et al.  Plasmon resonance enhanced multicolour photodetection by graphene. , 2011, Nature communications.

[43]  Jishan Wu,et al.  Anthracene-fused BODIPYs as near-infrared dyes with high photostability. , 2011, Organic letters.

[44]  K. Novoselov,et al.  Strong plasmonic enhancement of photovoltage in graphene. , 2011, Nature communications.

[45]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.