Visual control of straight flight in Drosophila melanogaster

SummaryThe optomotor system of Drosophila is investigated in a flight simulator in which the fly's yaw torque controls the angular velocity of the panorama (striped drum, negative feedback). Flies in the flight simulator maintain a stable orientation even in a homogeneously textured panorama without landmarks. During ‘straight’ flight, torque is not zero. It consists of small pulses mostly alternating in polarity. The course is controlled by the duration (and possibly amplitude) of the pulses. The system operates under reafference control. By comparing the pulses with the visual input the system continuously measures and adjusts the efficacy of the torque output. The comparison, however, is not between angular velocity and yaw torque but, instead, between visual acceleration and pretorque, the first time derivative of torque. For comparison, the system first computes a cross-correlation. If the correlation coefficient is above a certain threshold the system calculates the external gain and adjusts its internal gain so as to keep the total gain constant. With the correlation coefficient below threshold, however, the system keeps the internal gain low despite the infinitely small external gain. We propose that for a reafferent optomotor system the coupling coefficient and the correlation coefficient of pretorque and visual acceleration are more relevant than the distinction between exafference and reafference.

[1]  W. Reichardt,et al.  Properties of individual movement detectors as derived from behavioural experiments on the visual system of the fly , 1988, Biological Cybernetics.

[2]  Bernhard Möhl,et al.  ‘Biological noise’ and plasticity of sensorimotor pathways in the locust flight system , 2004, Journal of Comparative Physiology A.

[3]  M. Egelhaaf,et al.  The nonlinear mechanism of direction selectivity in the fly motion detection system , 2004, Naturwissenschaften.

[4]  T. Collett,et al.  Visual control of flight behaviour in the hoverflySyritta pipiens L. , 1975, Journal of comparative physiology.

[5]  G. Geiger,et al.  Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons , 1982, Biological Cybernetics.

[6]  M. Heisenberg,et al.  Vision in Drosophila , 1984 .

[7]  E. Buchner Elementary movement detectors in an insect visual system , 1976, Biological Cybernetics.

[8]  Karl Geokg Götz,et al.  Optomotorische Untersuchung des visuellen systems einiger Augenmutanten der Fruchtfliege Drosophila , 1964, Kybernetik.

[9]  Bernhard Möhl,et al.  Short-term learning during flight control inLocusta migratoria , 1988, Journal of Comparative Physiology A.

[10]  R. Wolf,et al.  Optomotor-blindH31—aDrosophila mutant of the lobula plate giant neurons , 1978, Journal of comparative physiology.

[11]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 1979, Journal of comparative physiology.

[12]  T. Poggio,et al.  Considerations on models of movement detection , 1973, Kybernetik.

[13]  Martin Heisenberg Initiale Aktivität und Willkürverhalten bei Tieren , 2004, Naturwissenschaften.

[14]  E. Holst,et al.  Das Reafferenzprinzip , 2004, Naturwissenschaften.

[15]  A. Borst,et al.  Transient and steady-state response properties of movement detectors. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[16]  Automatic gain control in movement detection of the fly , 1989, Naturwissenschaften.

[17]  Karl Georg Götz,et al.  Hirnforschung am Navigationssystem der Fliegen , 1975, Naturwissenschaften.

[18]  Alexander Borst,et al.  Principles of visual motion detection , 1989, Trends in Neurosciences.

[19]  Hendrik Eckert,et al.  The horizontal cells in the lobula plate of the blowfly,Phaenicia sericata , 1981, Journal of comparative physiology.

[20]  B. Hassenstein,et al.  Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus , 1956 .

[21]  Martin Egelhaaf,et al.  Dynamic properties of two control systems underlying visually guided turning in house-flies , 1987, Journal of Comparative Physiology A.

[22]  H. Mittelstaedt,et al.  Reafferenzprinzip — Apologie und Kritik , 1971 .

[23]  R. Wolf,et al.  Reafferent control of optomotor yaw torque inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.

[24]  W. Reichardt,et al.  Dynamic response properties of movement detectors: Theoretical analysis and electrophysiological investigation in the visual system of the fly , 1987, Biological Cybernetics.

[25]  M. Heisenberg,et al.  Flight control during ‘free yaw turns’ inDrosophila melanogaster , 1988, Journal of Comparative Physiology A.

[26]  R. Wolf,et al.  On the fine structure of yaw torque in visual flight orientation ofDrosophila melanogaster , 2004, Journal of comparative physiology.

[27]  C. Wehrhahn,et al.  Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala , 1983, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[28]  Werner Reichardt,et al.  Evaluation of optical motion information by movement detectors , 1987, Journal of Comparative Physiology A.

[29]  Erich Buchner,et al.  Behavioural Analysis of Spatial Vision in Insects , 1984 .

[30]  Werner Reichardt,et al.  Optical detection and fixation of objects by fixed flying flies , 1969, Naturwissenschaften.

[31]  Werner Reichardt,et al.  Musterinduzierte Flugorientierung , 1973, Naturwissenschaften.

[32]  M. Heisenberg,et al.  Visual orientation in motion-blind flies is an operant behaviour , 1986, Nature.