Resolution-Based Methods for Modal Logics

In this paper we give an overview of resolution methods for extended propositional modal logics. We adopt the standard translation approach and consider different resolution refinements which provide decision procedures for the resulting clause sets. Our procedures are based on ordered resolution and selection-based resolution. The logics that we cover are multi-modal logics defined over relations closed under intersection, union, converse and possibly complementation.

[1]  W. Nutt,et al.  Subsumption algorithms for concept languages , 1990 .

[2]  Alexander Leitsch,et al.  The Resolution Calculus , 1997, Texts in Theoretical Computer Science An EATCS Series.

[3]  Hans de Nivelle,et al.  A Resolution Decision Procedure for the Guarded Fragment , 1998, CADE.

[4]  George Gargov,et al.  A Note on Boolean Modal Logic , 1990 .

[5]  Harald Ganzinger,et al.  A Resolution-Based Decision Procedure for Extensions of K4 , 1998, Advances in Modal Logic.

[6]  Lloyd Humberstone The modal logic of 'all and only' , 1987, Notre Dame J. Formal Log..

[7]  Johan van Benthem,et al.  Back and Forth Between Modal Logic and Classical Logic , 1995, Log. J. IGPL.

[8]  Christian G. Fermüller,et al.  Resolution Methods for the Decision Problem , 1993, Lecture Notes in Computer Science.

[9]  Christoph Weidenbach,et al.  Soft Typing for Ordered Resolution , 1997, CADE.

[10]  Ullrich Hustadt,et al.  Issues of Decidability for Description Logics in the Framework of Resolution , 1998, FTP.

[11]  Hans Jürgen Ohlbach Combining Hilbert Style and Semantic Reasoning in a Resolution Framework , 1998, CADE.

[12]  Hans de Nivelle An Overview of Resolution Decision Procedures , 2000 .

[13]  Stephen A. Cook,et al.  The Relative Efficiency of Propositional Proof Systems , 1979, Journal of Symbolic Logic.

[14]  Richard C. T. Lee,et al.  Symbolic logic and mechanical theorem proving , 1973, Computer science classics.

[15]  Ullrich Hustadt,et al.  Simplification and Backjumping in Modal Tableau , 1998, TABLEAUX.

[16]  Harald Ganzinger,et al.  A superposition decision procedure for the guarded fragment with equality , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[17]  Hans Jürgen Ohlbach,et al.  Translation Methods for Non-Classical Logics: An Overview , 1993, Log. J. IGPL.

[18]  Johan van Benthem,et al.  Modal Languages and Bounded Fragments of Predicate Logic , 1998, J. Philos. Log..

[19]  F. Massacci Single Step Tableaux for Modal Logics Computational Properties, Complexity and Methodology , 2000 .

[20]  Rajeev Goré,et al.  Tableau Methods for Modal and Temporal Logics , 1999 .

[21]  M. de Rijke,et al.  A System of Dynamic Modal Logic , 1998, J. Philos. Log..

[22]  Ian Horrocks,et al.  Using an Expressive Description Logic: FaCT or Fiction? , 1998, KR.

[23]  Fabio Massacci Simplification: A General Constraint Propagation Technique for Propositional and Modal Tableaux , 1998, TABLEAUX.

[24]  J.M.G.G. de Nivelle Ordering Refinements of Resolution , 1995 .

[25]  Fabio Massacci,et al.  Strongly Analytic Tableaux for Normal Modal Logics , 1994, CADE.

[26]  Erich Grädel,et al.  On the Restraining Power of Guards , 1999, Journal of Symbolic Logic.

[27]  David A. Plaisted,et al.  A Structure-Preserving Clause Form Translation , 1986, J. Symb. Comput..

[28]  Lloyd Humberstone Inaccessible worlds , 1983, Notre Dame J. Formal Log..

[29]  Harald Ganzinger,et al.  Resolution Theorem Proving , 2001, Handbook of Automated Reasoning.

[30]  Tinko Tinchev,et al.  PDL with Data Constants , 1985, Inf. Process. Lett..

[31]  Ullrich Hustadt,et al.  Maslov's Class K Revisited , 1999, CADE.

[32]  Ullrich Hustadt,et al.  On the Relation of Resolution and Tableaux Proof Systems for Description Logics , 1999, IJCAI.

[33]  Harald Ganzinger,et al.  Rewrite-Based Equational Theorem Proving with Selection and Simplification , 1994, J. Log. Comput..

[34]  Tinko Tinchev,et al.  Modal Environment for Boolean Speculations , 1987 .

[35]  M. de Rijke,et al.  Encoding Two-Valued Nonclassical Logics in Classical Logic , 2001, Handbook of Automated Reasoning.

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.