Molecular Dynamics Simulations with Long-Range Interactions

The Wolf summation (Wolf et al., J. Chem. Phys. 110, 8254 (1999)), an order O(N) method for the calculation of long-range interactions, has been adapted successfully to the simulation of metal oxides. We present the combination of the method with the Tangney–Scandolo model for polarizable oxygen and the Streitz–Mintmire model for variable charges at metal oxide–metal interfaces. The methods have been implemented successfully in our molecular dynamics package IMD and applied to the structure of several metal oxides. The new methods allow for the simulation of cracks in oxides and the study of the flexoelectricity effect.

[1]  Siegfried Schmauder,et al.  Simulation of crack propagation in alumina with ab initio based polarizable force field. , 2012, The Journal of chemical physics.

[2]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[3]  Franz Gähler,et al.  Direct Wolf summation of a polarizable force field for silica. , 2010, The Journal of chemical physics.

[4]  P. Asimow,et al.  Determination of the partial molar volume of SiO2 in silicate liquids at elevated pressures and temperatures: a new experimental approach , 1998 .

[5]  Influence of polarizability on metal oxide properties studied by molecular dynamics simulations. , 2012, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  P. P. Ewald Die Berechnung optischer und elektrostatischer Gitterpotentiale , 1921 .

[7]  Johannes Roth,et al.  Laser Ablation of Metals , 2010, High Performance Computing in Science and Engineering.

[8]  L. Stixrude,et al.  First-principles calculations of the structural, dynamical, and electronic properties of liquid MgO , 2006 .

[9]  Thomas Ertl,et al.  2012 IEEE Visualization Contest Winner: Visualizing Polarization Domains in Barium Titanate , 2013, IEEE Computer Graphics and Applications.

[10]  P. Brommer,et al.  Potfit: effective potentials from ab initio data , 2007, 0704.0185.

[11]  Sandro Scandolo,et al.  An ab initio parametrized interatomic force field for silica , 2002 .

[12]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[13]  M. Krisch,et al.  Phonon density of states probed by inelastic x-ray scattering , 2005 .

[14]  D. Batens,et al.  Theory and Experiment , 1988 .

[15]  Frederick H. Streitz,et al.  Electrostatic potentials for metal-oxide surfaces and interfaces. , 1994 .

[16]  Philipp Beck,et al.  Ab initio based polarizable force field generation and application to liquid silica and magnesia. , 2011, The Journal of chemical physics.

[17]  Michael M. Resch,et al.  High Performance Computing in Science and Engineering '10 - Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2010 , 2011 .

[18]  Kramer,et al.  Force fields for silicas and aluminophosphates based on ab initio calculations. , 1990, Physical review letters.

[19]  S. Phillpot,et al.  Exact method for the simulation of Coulombic systems by spherically truncated, pairwise r−1 summation , 1999 .

[20]  Jörg Stadler,et al.  IMD: A Software Package for Molecular Dynamics Studies on Parallel Computers , 1997 .

[21]  A. Elsener,et al.  A local chemical potential approach within the variable charge method formalism , 2008 .

[22]  Thomas Ertl,et al.  Visualization of Electrostatic Dipoles in Molecular Dynamics of Metal Oxides , 2012, IEEE Transactions on Visualization and Computer Graphics.

[23]  S. Saxena,et al.  Lattice dynamics of MgO at high pressure: theory and experiment. , 2006, Physical review letters.

[24]  Frank McGuire The Origins of Sculpture: Evolutionary 3D Design , 1993 .

[25]  Franz Gähler,et al.  A MOLECULAR DYNAMICS RUN WITH 5 180 116 000 PARTICLES , 2000 .