Development trends for therapeutic antibody fragments

Although fewer antibody fragments have entered the clinic than full-length monoclonal antibodies, proof-of-concept studies for these therapeutics remain the main hurdle.

[1]  G. Winter,et al.  Aggregation-resistant domain antibodies selected on phage by heat denaturation , 2004, Nature Biotechnology.

[2]  Janice M Reichert,et al.  Monoclonal antibodies as innovative therapeutics. , 2008, Current pharmaceutical biotechnology.

[3]  L. Wyns,et al.  Efficient Targeting of Conserved Cryptic Epitopes of Infectious Agents by Single Domain Antibodies , 2004, Journal of Biological Chemistry.

[4]  A. Plückthun,et al.  Assembly of a functional immunoglobulin Fv fragment in Escherichia coli. , 1988, Science.

[5]  Janice M Reichert,et al.  Monoclonal antibody successes in the clinic , 2005, Nature Biotechnology.

[6]  K. Fujimori,et al.  Modeling analysis of the global and microscopic distribution of immunoglobulin G, F(ab')2, and Fab in tumors. , 1989, Cancer research.

[7]  K. D. Hardman,et al.  Single-chain antigen-binding proteins. , 1988, Science.

[8]  R. Owens,et al.  Improved tumor targeting with chemically cross-linked recombinant antibody fragments. , 1994, Cancer research.

[9]  P. Hudson,et al.  Engineered antibody fragments and the rise of single domains , 2005, Nature Biotechnology.

[10]  R. R. Robinson,et al.  Escherichia coli secretion of an active chimeric antibody fragment. , 1988, Science.

[11]  T. Yokota,et al.  Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. , 1992, Cancer research.

[12]  F. Davis,et al.  Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. , 1977, The Journal of biological chemistry.

[13]  P. T. Jones,et al.  Binding activities of a repertoire of single immunoglobulin variable domains secreted from Escherichia coli , 1989, Nature.

[14]  T. Yokota,et al.  Differential metabolic patterns of iodinated versus radiometal chelated anticarcinoma single-chain Fv molecules. , 1992, Cancer research.

[15]  A. Sarai,et al.  Comparative thermodynamic analyses of the Fv, Fab* and Fab and Fab fragments of anti‐dansyl mouse monoclonal antibody , 1995 .

[16]  Lode Wyns,et al.  Potent enzyme inhibitors derived from dromedary heavy‐chain antibodies , 1998, The EMBO journal.

[17]  G. Winter,et al.  Comparative stabilities in vitro and in vivo of a recombinant mouse antibody FvCys fragment and a bisFvCys conjugate. , 1992, Journal of immunology.

[18]  R. Bruccoleri,et al.  Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[19]  D. Inbar,et al.  Localization of antibody-combining sites within the variable portions of heavy and light chains. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[20]  R K Jain,et al.  Transport of molecules in the tumor interstitium: a review. , 1987, Cancer research.

[21]  R. Ober,et al.  From sorting endosomes to exocytosis: association of Rab4 and Rab11 GTPases with the Fc receptor, FcRn, during recycling. , 2005, Molecular biology of the cell.

[22]  Dennis R. Burton,et al.  Human antibody–Fc receptor interactions illuminated by crystal structures , 2004, Nature Reviews Immunology.

[23]  A. Plückthun,et al.  Stability engineering of antibody single-chain Fv fragments. , 2001, Journal of molecular biology.

[24]  E. Neuwelt,et al.  Delivery of melanoma-associated immunoglobulin monoclonal antibody and Fab fragments to normal brain utilizing osmotic blood-brain barrier disruption. , 1988, Cancer research.

[25]  Janice M. Reichert,et al.  Development trends for monoclonal antibody cancer therapeutics , 2007, Nature Reviews Drug Discovery.

[26]  K. Maggon,et al.  Monoclonal antibody "gold rush". , 2007, Current medicinal chemistry.

[27]  H. de Haard,et al.  Properties, production, and applications of camelid single-domain antibody fragments , 2007, Applied Microbiology and Biotechnology.

[28]  S. Larson,et al.  Localization of 131I-labeled p97-specific Fab fragments in human melanoma as a basis for radiotherapy. , 1983, The Journal of clinical investigation.

[29]  W. Arend,et al.  Serum disappearance and catabolism of homologous immunoglobulin fragments in rats. , 1975, Clinical and experimental immunology.

[30]  L. Álvarez-Vallina,et al.  Antibody engineering: facing new challenges in cancer therapy , 2005, Acta Pharmacologica Sinica.

[31]  R. Steinbrook,et al.  The price of sight--ranibizumab, bevacizumab, and the treatment of macular degeneration. , 2006, The New England journal of medicine.

[32]  R K Jain,et al.  Mechanisms of heterogeneous distribution of monoclonal antibodies and other macromolecules in tumors: significance of elevated interstitial pressure. , 1988, Cancer research.