Radiation shielding and mechanical properties of mullite-zirconia composites fabricated from investment-casting shell waste

[1]  S. Avcıoğlu,et al.  LDPE Matrix Composites Reinforced with Dysprosium-Boron Containing Compounds for Radiation Shielding Applications , 2022, Journal of Alloys and Compounds.

[2]  Y. Rammah,et al.  Evaluation of γ-rays and neutron shielding parameters of high dense bismo-boro-tellurite glasses: Comparative study , 2022, Radiation Physics and Chemistry.

[3]  A. Gurlo,et al.  Fabrication and characterization of porous mullite ceramics derived from fluoride-assisted Metakaolin-Al(OH)3 annealing for filtration applications , 2022, Open Ceramics.

[4]  A. Abdel-Galil,et al.  Impact of radiation on CoO-doped borate glass: lead-free radiation shielding , 2021, Applied Physics A.

[5]  W. Burger,et al.  Alumina, Zirconia and Their Composite Ceramics with Properties Tailored for Medical Applications , 2021, Journal of Composites Science.

[6]  E. Kavaz,et al.  A closer-look on Copper(II) oxide reinforced Calcium-Borate glasses: Fabrication and multiple experimental assessment on optical, structural, physical, and experimental neutron/gamma shielding properties , 2021, Ceramics International.

[7]  A. Gurlo,et al.  AlF3-assisted flux growth of mullite whiskers and their application in fabrication of porous mullite-alumina monoliths , 2021 .

[8]  M. Awaad,et al.  Characterization of in-situ zirconia/mullite composites prepared by sol-gel technique , 2021, Journal of Asian Ceramic Societies.

[9]  F. Clemens,et al.  Effect of MgO sintering additive on mullite structures manufactured by fused deposition modeling (FDM) technology , 2021 .

[10]  Xinhong Liu,et al.  A novel strategy to fabricate high-strength mullite by the reaction sintering method using Al3+/Ce4+-doped SiO2 , 2021 .

[11]  F. Hila,et al.  EpiXS: A Windows-based program for photon attenuation, dosimetry and shielding based on EPICS2017 (ENDF/B-VIII) and EPDL97 (ENDF/B-VI.8) , 2021 .

[12]  M. Pasek,et al.  The response of zircon to the extreme pressures and temperatures of a lightning strike , 2021, Scientific Reports.

[13]  A. Gurlo,et al.  Low-temperature fluoride-assisted synthesis of mullite whiskers , 2020, RSC advances.

[14]  M. Salleh,et al.  A Review on Synthesis of Mullite Ceramics from Industrial Wastes , 2019, Recycling.

[15]  A. Gurlo,et al.  Materials and Applications for Low-Cost Ceramic Membranes , 2019, Membranes.

[16]  E. Ewais,et al.  Investigation of mechanical strength of the functionally graded zirconia-mullite/alumina ceramics tailored for high temperature applications , 2019, Materials Research Express.

[17]  Shujing Li,et al.  The potential usage of waste foundry sand from investment casting in refractory industry , 2019, Journal of Cleaner Production.

[18]  Jianbao Li,et al.  Microstructure and mechanical properties of hot-pressed Al2O3–mullite–ZrO2–SiC composites , 2019, Materials Science and Engineering: A.

[19]  Houman Kazemzadeh,et al.  Preparation of mullite/B4C composites: A comparative study on the effect of heating methods , 2018, Ceramics International.

[20]  Xiaodong Guo,et al.  Study on mechanical properties of hot pressing sintered mullite-ZrO 2 composites with finite element method , 2018 .

[21]  A. Gurlo,et al.  Surface chemistry of pure tetragonal ZrO2 and gas-phase dependence of the tetragonal-to-monoclinic ZrO2 transformation. , 2017, Dalton transactions.

[22]  F. Giuliani,et al.  High‐temperature fracture toughness of mullite with monoclinic zirconia , 2017 .

[23]  Y. Hirata,et al.  Theoretical and experimental analyses of Young's modulus and thermal expansion coefficient of the alumina-mullite system , 2016 .

[24]  E. Çeli̇k,et al.  Influence of zircon particle size on conventional and microwave assisted reaction sintering of in-situ mullite–zirconia composites , 2016 .

[25]  A. Ghosh,et al.  Synthesis and characterization of mullite–zirconia composites by reaction sintering of zircon flour and sillimanite beach sand , 2015, Bulletin of Materials Science.

[26]  William E Lee,et al.  Second Phase‐Induced Degradation of Fused MgO Partially Stabilized Zirconia Aggregates , 2015 .

[27]  G. Sedmale,et al.  Spark Plasma Sintering (SPS) to the Mullite-Zirconia Ceramics Development , 2015 .

[28]  T. Ebadzadeh,et al.  Densification, microstructure and mechanical properties of Mullite–TiC composites prepared by spark plasma sintering , 2015 .

[29]  Shaopeng Li,et al.  Preparation of high performance mullite ceramics from high-aluminum fly ash by an effective method , 2015 .

[30]  Yingchao Dong,et al.  Recycling of waste fly ash for production of porous mullite ceramic membrane supports with increased porosity , 2014 .

[31]  P. Aungkavattana,et al.  Effect of zirconia content on mechanical and thermal properties of mullite–zirconia composite , 2014 .

[32]  M. Zawrah,et al.  In situ formation of sintered cordierite–mullite nano–micro composites by utilizing of waste silica fume , 2012 .

[33]  B. K. Mohapatra,et al.  Effect of MgO in the microstructure formation of zirconia mullite composites from sillimanite and zircon , 2012 .

[34]  P Cloetens,et al.  Monoclinic phase transformations of zirconia-based dental prostheses, induced by clinically practised surface manipulations. , 2011, Acta biomaterialia.

[35]  A. Guo,et al.  Effects of SiO2 and Fe2O3 on Morphological of Mullite , 2010 .

[36]  L. Garrido,et al.  Zirconia toughening of mullite–zirconia–zircon composites obtained by direct sintering , 2010 .

[37]  L. Garrido,et al.  Mechanical and fracture properties of zircon–mullite composites obtained by direct sintering , 2009 .

[38]  Hongwen Ma,et al.  Effect of V2O5 on the properties of mullite ceramics synthesized from high-aluminum fly ash and bauxite. , 2009, Journal of hazardous materials.

[39]  G. Meng,et al.  Preparation of low-cost mullite ceramics from natural bauxite and industrial waste fly ash , 2008 .

[40]  E. A. Payzant,et al.  Thermal Decomposition of Zircon Refractories , 2001 .

[41]  R. Stevens,et al.  Mullite ceramics derived from coal fly ash , 2001 .

[42]  K. El-Barawy,et al.  Cubic Zirconia from Zircon Sand by Firing with CaO/MgO Mixture , 1999 .

[43]  M. Mizuno Microstructure, microchemistry, and flexural strength of mullite ceramics , 1991 .

[44]  John W. Hutchinson,et al.  Microcrack toughening in alumina/zirconia , 1987 .

[45]  A. Heuer,et al.  Microstructural Development in MgO‐Partially Stabilized Zirconia (Mg‐PSZ) , 1979 .

[46]  S. Bhattacharyya,et al.  Sintering and microstructural study of mullite prepared from kaolinite and reactive alumina: Effect of MgO and TiO 2 , 2020 .

[47]  M. Sayyed,et al.  Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry , 2020 .

[48]  C. B. Ustundag,et al.  Processing and properties of boron carbide (B4C) reinforced LDPE composites for radiation shielding , 2020 .

[49]  H. Rajaei,et al.  Effect of spark plasma sintering temperature on microstructure and mechanical properties of mullite - WC composites , 2018 .

[50]  H. Tekin,et al.  A comprehensive study of the energy absorption and exposure buildup factors of different bricks for gamma-rays shielding , 2017 .

[51]  Z. J. Li,et al.  Zirconia-Mullite Obtained from Co-Precipitated Zirconia-Mullite Composite Powders by SPS , 2016 .

[52]  Xiangyun Deng,et al.  Fabrication and properties of SiC/mullite composite porous ceramics , 2014 .

[53]  M. Bourham,et al.  Applications of Open-cell and Closed-cell Metal Foams for Radiation Shielding☆ , 2014 .

[54]  R. Telle,et al.  Thermal stability of zircon (ZrSiO4) , 2008 .

[55]  S. Maitra,et al.  Role of MgO and Cr2O3 additives on the properties of zirconia–mullite composites , 2002 .