QUANTUM SECURE DIRECT COMMUNICATION USING A SIX-QUBIT MAXIMALLY ENTANGLED STATE WITH DENSE CODING

Using quantum dense coding, a quantum secure direct communication scheme with a six-qubit maximally entangled state is proposed. If the first security test is passed, the sender performs unitary transformations to encode the secret information on her particles and sends to the receiver. The receiver then performs projective measurements to decode the secret information. It enables the sender to transmit six-bit classical secret message by sending three particles to the receiver. The second security test is adopted to guarantee the security of the communication.

[1]  Ujjwal Sen,et al.  DENSE CODING WITH MULTIPARTITE QUANTUM STATES , 2006 .

[2]  Charles H. Bennett,et al.  Quantum cryptography without Bell's theorem. , 1992, Physical review letters.

[3]  D. Bruß Optimal Eavesdropping in Quantum Cryptography with Six States , 1998, quant-ph/9805019.

[4]  Fuguo Deng,et al.  Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block , 2003, quant-ph/0308173.

[5]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[6]  Charles H. Bennett,et al.  Purification of noisy entanglement and faithful teleportation via noisy channels. , 1995, Physical review letters.

[7]  P. Panigrahi,et al.  Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state , 2007, 0708.3785.

[8]  Daowen Qiu,et al.  The states of W-class as shared resources for perfect teleportation and superdense coding , 2007, quant-ph/0701030.

[9]  Chuan Wang,et al.  Multi-step quantum secure direct communication using multi-particle Green–Horne–Zeilinger state , 2005 .

[10]  Ekert,et al.  "Event-ready-detectors" Bell experiment via entanglement swapping. , 1993, Physical review letters.

[11]  Fuguo Deng,et al.  Reply to ``Comment on `Secure direct communication with a quantum one-time-pad' '' , 2004, quant-ph/0405177.

[12]  Deutsch,et al.  Quantum Privacy Amplification and the Security of Quantum Cryptography over Noisy Channels. , 1996, Physical review letters.

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Fuguo Deng,et al.  Quantum secure direct communication with high-dimension quantum superdense coding , 2005 .

[15]  Xin-Wen Wang,et al.  Dense coding and teleportation with one-dimensional cluster states , 2007 .

[16]  Jinhyoung Lee,et al.  Multipartite entanglement for entanglement teleportation , 2002, quant-ph/0201069.

[17]  Optimal dense coding with arbitrary pure entangled states (5 pages) , 2006, quant-ph/0604149.

[18]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[19]  H. Weinfurter,et al.  Experimental Entanglement Swapping: Entangling Photons That Never Interacted , 1998 .

[20]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[21]  Y. Yeo,et al.  Teleportation and dense coding with genuine multipartite entanglement. , 2005, Physical review letters.

[22]  Ping Zhou,et al.  Quantum secure direct communication network with Einstein–Podolsky–Rosen pairs , 2006 .

[23]  A. Plastino,et al.  Multiqubit systems: highly entangled states and entanglement distribution , 2007, 0803.3979.

[24]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[25]  S. Stepney,et al.  Searching for highly entangled multi-qubit states , 2005 .

[26]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[27]  Guang-Can Guo,et al.  General form of genuine multipartite entanglement quantum channels for teleportation , 2006 .

[28]  Antoni Wójcik Eavesdropping on the "ping-pong" quantum communication protocol. , 2003, Physical review letters.

[29]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[30]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[31]  K. Boström,et al.  Deterministic secure direct communication using entanglement. , 2002, Physical review letters.

[32]  G. Long,et al.  Theoretically efficient high-capacity quantum-key-distribution scheme , 2000, quant-ph/0012056.

[33]  Li Dong,et al.  Controlled deterministic secure quantum communication using five-qubit entangled states and two-step security test , 2009 .