Experimental investigation of main controls to methane adsorption in clay-rich rocks

[1]  L. Michot,et al.  Surface Area and Porosity , 2013 .

[2]  Tongwei Zhang,et al.  Grain assemblages and strong diagenetic overprinting in siliceous mudrocks, Barnett Shale (Mississippian), Fort Worth Basin, Texas , 2012 .

[3]  Tongwei Zhang,et al.  Effect of organic-matter type and thermal maturity on methane adsorption in shale-gas systems , 2012 .

[4]  Y. Gensterblum,et al.  The Methane Storage Capacity of Black Shales , 2012 .

[5]  Yongchun Tang,et al.  Isotope fractionation of methane during natural gas flow with coupled diffusion and adsorption/desorption , 2012 .

[6]  A. Schimmelmann,et al.  Geochemical constraints on the origin and volume of gas in the New Albany Shale (Devonian–Mississippian), eastern Illinois Basin , 2010 .

[7]  S. Siegesmund,et al.  N(2)-BET specific surface area of bentonites. , 2010, Journal of colloid and interface science.

[8]  John B. Southard,et al.  Lenticular Shale Fabrics Resulting from Intermittent Erosion of Water-Rich Muds—Interpreting the Rock Record in the Light of Recent Flume Experiments , 2010 .

[9]  R. Loucks,et al.  Morphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale , 2009 .

[10]  R. Marc Bustin,et al.  The importance of shale composition and pore structure upon gas storage potential of shale gas reservoirs , 2009 .

[11]  Ebrahim Fathi,et al.  Matrix Heterogeneity Effects on Gas Transport and Adsorption in Coalbed and Shale Gas Reservoirs , 2009 .

[12]  R. Loucks,et al.  Mississippian Barnett Formation, Fort Worth Basin, Texas: Bulk geochemical inferences and Mo–TOC constraints on the severity of hydrographic restriction , 2008 .

[13]  R. Loucks,et al.  Black mudrocks; lessons and questions from the Mississippian Barnett Shale in the southern Midcontinent , 2008 .

[14]  R. Bustin,et al.  Lower Cretaceous gas shales in northeastern British Columbia, Part II: evaluation of regional potential gas resources , 2008 .

[15]  R. Marc Bustin,et al.  Lower Cretaceous gas shales in northeastern British Columbia, Part I: geological controls on methane sorption capacity , 2008 .

[16]  R. Bustin,et al.  Characterizing the shale gas resource potential of Devonian–Mississippian strata in the Western Canada sedimentary basin: Application of an integrated formation evaluation , 2008 .

[17]  R. Marc Bustin,et al.  The organic matter distribution and methane capacity of the Lower Cretaceous strata of Northeastern British Columbia, Canada , 2007 .

[18]  D. Jarvie,et al.  Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment , 2007 .

[19]  Daniel M. Jarvie,et al.  Oil and gas geochemistry and petroleum systems of the Fort Worth Basin , 2007 .

[20]  Stephen C. Ruppel,et al.  Mississippian Barnett Shale: Lithofacies and depositional setting of a deep-water shale-gas succession in the Fort Worth Basin, Texas , 2007 .

[21]  R. Bustin,et al.  Shale Gas Potential of the Lower Jurassic Gordondale Member, Northeastern British Columbia, Canada , 2007 .

[22]  R. Bustin,et al.  On the effects of petrographic composition on coalbed methane sorption , 2007 .

[23]  M. Muhler,et al.  Consistent approach to adsorption thermodynamics on heterogeneous surfaces using different empirical energy distribution models. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[24]  Andreas Busch,et al.  Investigation of high-pressure selective adsorption/desorption behaviour of CO2 and CH4 on coals: An experimental study , 2006 .

[25]  D. Wurster,et al.  Baseline studies of the clay minerals society source clays: Specific surface area by the Brunauer Emmett Teller (BET) method , 2006 .

[26]  Faïza Bergaya,et al.  Handbook of clay science , 2006 .

[27]  A. Palomino,et al.  Fabric Map for Kaolinite: Effects of Ph and Ionic Concentration on Behavior , 2005 .

[28]  Daniel M. Jarvie,et al.  Mississippian Barnett Shale, Fort Worth basin, north-central Texas: Gas-shale play with multi–trillion cubic foot potential , 2005 .

[29]  A. Busch,et al.  Methane and carbon dioxide adsorption–diffusion experiments on coal: upscaling and modeling , 2004 .

[30]  R. Aringhieri Nanoporosity Characteristics of Some Natural Clay Minerals and Soils , 2004 .

[31]  J. Lee,et al.  Effects of exchanged surfactant cations on the pore structure and adsorption characteristics of montmorillonite. , 2004, Journal of colloid and interface science.

[32]  A. Myers Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules , 2004 .

[33]  Alírio E. Rodrigues,et al.  Adsorption Equilibrium of Methane, Carbon Dioxide, and Nitrogen on Zeolite 13X at High Pressures , 2004 .

[34]  Ai-Ling Cheng,et al.  Selective adsorption of hydrocarbon gases on clays and organic matter , 2004 .

[35]  A. Busch,et al.  Methane and CO2 sorption and desorption measurements on dry Argonne premium coals: pure components and mixtures , 2003 .

[36]  J. Curtis Fractured shale-gas systems , 2002 .

[37]  Y. Gensterblum,et al.  High-pressure methane and carbon dioxide adsorption on dry and moisture-equilibrated Pennsylvanian coals , 2002 .

[38]  C. T. Chiou,et al.  Effects of Exchanged Cation on the Microporosity of Montmorillonite , 1997 .

[39]  X Lu,et al.  Adsorption measurements in Devonian shales , 1995 .

[40]  Wolfgang Wagner,et al.  A New Equation of State and Tables of Thermodynamic Properties for Methane Covering the Range from the Melting Line to 625 K at Pressures up to 100 MPa , 1991 .

[41]  R. D. McCarty,et al.  A New Wide Range Equation of State for Helium , 1990 .

[42]  V. Drits,et al.  The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction , 1984, Clay Minerals.

[43]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[44]  L. Aylmore,et al.  THE MICROPORE SIZE DISTRIBUTIONS OF CLAY MINERAL SYSTEMS , 1967 .