Prime-seq, efficient and powerful bulk RNA sequencing

[1]  Lucas E. Wange,et al.  Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection , 2022, Nature Communications.

[2]  M. Götz,et al.  Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2 , 2021, Cell reports.

[3]  Cinque S. Soto,et al.  Biological controls for standardization and interpretation of adaptive immune receptor repertoire profiling , 2021, eLife.

[4]  Lucas E. Wange,et al.  Retrotransposons as pathogenicity factors of the plant pathogenic fungus Botrytis cinerea , 2021, Genome Biology.

[5]  Indrajeet Patil,et al.  ggsignif: R Package for Displaying Significance Brackets for 'ggplot2' , 2021 .

[6]  Lucas E. Wange,et al.  Loss-of-function mutations in the histone methyltransferase EZH2 promote chemotherapy resistance in AML , 2021, Scientific Reports.

[7]  A. Westermann,et al.  Cross-species RNA-seq for deciphering host–microbe interactions , 2021, Nature Reviews Genetics.

[8]  Lucas E. Wange,et al.  TRNP1 sequence, function and regulation co-evolve with cortical folding in mammals , 2021 .

[9]  Lucas E. Wange,et al.  Protective immune trajectories in early viral containment of non-pneumonic SARS-CoV-2 infection , 2021, bioRxiv.

[10]  José Alquicira-Hernandez,et al.  Benchmarking of cell type deconvolution pipelines for transcriptomics data , 2020, Nature Communications.

[11]  Johannes W. Bagnoli,et al.  Continued Bcl6 Expression Prevents the Transdifferentiation of Established Tfh Cells into Th1 Cells during Acute Viral Infection. , 2020, Cell reports.

[12]  Lucas E. Wange,et al.  A non-invasive method to generate induced pluripotent stem cells from primate urine , 2020, Scientific Reports.

[13]  M. Daemen,et al.  Glucocorticoid-induced tumour necrosis factor receptor family-related protein (GITR) drives atherosclerosis in mice and is associated with an unstable plaque phenotype and cerebrovascular events in humans , 2020, European heart journal.

[14]  W. Wurst,et al.  Congenic expression of poly-GA but not poly-PR in mice triggers selective neuron loss and interferon responses found in C9orf72 ALS , 2020, Acta Neuropathologica.

[15]  Johannes W. Bagnoli,et al.  In vivo inducible reverse genetics in patients’ tumors to identify individual therapeutic targets , 2020, Nature Communications.

[16]  Oliver Stegle,et al.  Benchmarking single-cell RNA-sequencing protocols for cell atlas projects , 2020, Nature Biotechnology.

[17]  W. Enard,et al.  Recent evolution of a TET-controlled and DPPA3/STELLA-driven pathway of passive DNA demethylation in mammals , 2020, Nature Communications.

[18]  Thomas M. Norman,et al.  Combinatorial single-cell CRISPR screens by direct guide RNA capture and targeted sequencing , 2020, Nature Biotechnology.

[19]  Q. Tu,et al.  Decode-seq: a practical approach to improve differential gene expression analysis , 2020, Genome Biology.

[20]  K. Slowikowski,et al.  Automatically Position Non-Overlapping Text Labels with 'ggplot2' [R package ggrepel version 0.8.2] , 2020 .

[21]  Johannes W. Bagnoli,et al.  ZBTB7A prevents RUNX1-RUNX1T1-dependent clonal expansion of human hematopoietic stem and progenitor cells , 2020, Oncogene.

[22]  Nicolas Chevrier,et al.  A whole-tissue RNA-seq toolkit for organism-wide studies of gene expression with PME-seq , 2020, Nature Protocols.

[23]  Johannes W. Bagnoli,et al.  Plasticity in growth behavior of patients' acute myeloid leukemia stem cells growing in mice. , 2020, Haematologica.

[24]  H. Xi,et al.  3’Pool-seq: an optimized cost-efficient and scalable method of whole-transcriptome gene expression profiling , 2020, BMC Genomics.

[25]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[26]  R. Sandberg,et al.  Single-cell RNA counting at allele and isoform resolution using Smart-seq3 , 2019, Nature Biotechnology.

[27]  John C. Marioni,et al.  Unsupervised removal of systematic background noise from droplet-based single-cell experiments using CellBender , 2019, bioRxiv.

[28]  Lukas P. M. Kremer A Cross Between a 2D Density Plot and a Scatter Plot [R package ggpointdensity version 0.1.0] , 2019 .

[29]  Jeffrey A. Lewis,et al.  Comparison of RNA isolation methods on RNA-Seq: implications for differential expression and meta-analyses , 2019, BMC Genomics.

[30]  Fabian J Theis,et al.  BART-Seq: cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis , 2019, Genome Biology.

[31]  J. Hadfield,et al.  RNA sequencing: the teenage years , 2019, Nature Reviews Genetics.

[32]  S. Zahler,et al.  Actin stabilizing compounds show specific biological effects due to their binding mode , 2019, Scientific Reports.

[33]  S. Zahler,et al.  Chivosazole A Modulates Protein-Protein Interactions of Actin. , 2019, Journal of Natural Products.

[34]  Oliver Stegle,et al.  Benchmarking Single-Cell RNA Sequencing Protocols for Cell Atlas Projects , 2019, bioRxiv.

[35]  A. Nagano,et al.  Lasy-Seq: a high-throughput library preparation method for RNA-Seq and its application in the analysis of plant responses to fluctuating temperatures , 2019, Scientific Reports.

[36]  B. Deplancke,et al.  BRB-seq: ultra-affordable high-throughput transcriptomics enabled by bulk RNA barcoding and sequencing , 2019, Genome Biology.

[37]  Beate Vieth,et al.  A systematic evaluation of single cell RNA-seq analysis pipelines , 2019, Nature Communications.

[38]  Lei S. Qi,et al.  CRISPR Activation Screens Systematically Identify Factors that Drive Neuronal Fate and Reprogramming. , 2018, Cell stem cell.

[39]  Marilisa Neri,et al.  DRUG-seq for miniaturized high-throughput transcriptome profiling in drug discovery , 2018, Nature Communications.

[40]  Donna M Bond,et al.  Bio-On-Magnetic-Beads (BOMB): Open platform for high-throughput nucleic acid extraction and manipulation , 2018, bioRxiv.

[41]  S. Zahler,et al.  Transcriptional effects of actin-binding compounds: the cytoplasm sets the tone , 2018, Cellular and Molecular Life Sciences.

[42]  Lucas E. Wange,et al.  Sensitive and powerful single-cell RNA sequencing using mcSCRB-seq , 2018, Nature Communications.

[43]  Gordon K Smyth,et al.  The R package Rsubread is easier, faster, cheaper and better for alignment and quantification of RNA sequencing reads , 2018, bioRxiv.

[44]  Erik Sundström,et al.  RNA velocity of single cells , 2018, Nature.

[45]  Liisa Holm,et al.  BARCOSEL: a tool for selecting an optimal barcode set for high-throughput sequencing , 2018, BMC Bioinformatics.

[46]  Matthew E. Ritchie,et al.  Covering all your bases: incorporating intron signal from RNA-seq data , 2018, bioRxiv.

[47]  S. Zahler,et al.  Micropatterning as a tool to identify regulatory triggers and kinetics of actin-mediated endothelial mechanosensing , 2018, Journal of Cell Science.

[48]  Ryan M Spengler,et al.  Comprehensive multi-center assessment of accuracy, reproducibility and bias of small RNA-seq methods for quantitative miRNA profiling , 2018, Nature Biotechnology.

[49]  Christoph Ziegenhain,et al.  Quantitative single-cell transcriptomics , 2018, Briefings in functional genomics.

[50]  Mathias J Friedrich,et al.  Evolutionary routes and KRAS dosage define pancreatic cancer phenotypes , 2018, Nature.

[51]  Ulrich Mansmann,et al.  A 29-gene and cytogenetic score for the prediction of resistance to induction treatment in acute myeloid leukemia , 2017, Haematologica.

[52]  K. Döhner,et al.  Azacitidine combined with the selective FLT3 kinase inhibitor crenolanib disrupts stromal protection and inhibits expansion of residual leukemia-initiating cells in FLT3-ITD AML with concurrent epigenetic mutations , 2017, Oncotarget.

[53]  Stanley E Lazic,et al.  What exactly is ‘N’ in cell culture and animal experiments? , 2017, bioRxiv.

[54]  Christoph Ziegenhain,et al.  powsimR: Power analysis for bulk and single cell RNA-seq experiments , 2017, bioRxiv.

[55]  Christoph Ziegenhain,et al.  zUMIs - A fast and flexible pipeline to process RNA sequencing data with UMIs , 2017, bioRxiv.

[56]  Angela N. Brooks,et al.  A Next Generation Connectivity Map: L1000 Platform and the First 1,000,000 Profiles , 2017, Cell.

[57]  S. Teichmann,et al.  Exponential scaling of single-cell RNA-seq in the past decade , 2017, Nature Protocols.

[58]  R. Iyengar,et al.  A Comparison of mRNA Sequencing with Random Primed and 3′-Directed Libraries , 2017, bioRxiv.

[59]  Anna V. Taubenberger,et al.  Niche WNT5A regulates the actin cytoskeleton during regeneration of hematopoietic stem cells , 2017, The Journal of experimental medicine.

[60]  Atray Dixit,et al.  Correcting Chimeric Crosstalk in Single Cell RNA-seq Experiments , 2016, bioRxiv.

[61]  W. Hiddemann,et al.  Characterization of Rare, Dormant, and Therapy-Resistant Cells in Acute Lymphoblastic Leukemia , 2016, Cancer cell.

[62]  W. Enard,et al.  Drug Resistance and Dormancy Represent Reversible Characteristics in Patients' ALL Cells Growing in Mice , 2016 .

[63]  Grace X. Y. Zheng,et al.  Massively parallel digital transcriptional profiling of single cells , 2016, Nature Communications.

[64]  Dan Knights,et al.  Systematic improvement of amplicon marker gene methods for increased accuracy in microbiome studies , 2016, Nature Biotechnology.

[65]  Christoph Ziegenhain,et al.  The impact of amplification on differential expression analyses by RNA-seq , 2016, Scientific Reports.

[66]  I. Hellmann,et al.  Comparative Analysis of Single-Cell RNA Sequencing Methods , 2016, bioRxiv.

[67]  C. Wilke Streamlined Plot Theme and Plot Annotations for 'ggplot2' , 2015 .

[68]  Allon M. Klein,et al.  Droplet Barcoding for Single-Cell Transcriptomics Applied to Embryonic Stem Cells , 2015, Cell.

[69]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[70]  W. Hiddemann,et al.  An Advanced Preclinical Mouse Model for Acute Myeloid Leukemia Using Patients' Cells of Various Genetic Subgroups and In Vivo Bioluminescence Imaging , 2015, PloS one.

[71]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[72]  David P. Kreil,et al.  Cross-platform ultradeep transcriptomic profiling of human reference RNA samples by RNA-Seq , 2014, Scientific Data.

[73]  David P. Kreil,et al.  A comprehensive assessment of RNA-seq accuracy, reproducibility and information content by the Sequencing Quality Control consortium , 2014, Nature Biotechnology.

[74]  D. Cacchiarelli,et al.  Characterization of directed differentiation by high-throughput single-cell RNA-Seq , 2014, bioRxiv.

[75]  Jie Zhou,et al.  RNA-seq differential expression studies: more sequence or more replication? , 2014, Bioinform..

[76]  Åsa K. Björklund,et al.  Smart-seq2 for sensitive full-length transcriptome profiling in single cells , 2013, Nature Methods.

[77]  Tilo Buschmann,et al.  Levenshtein error-correcting barcodes for multiplexed DNA sequencing , 2013, BMC Bioinformatics.

[78]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[79]  S. Linnarsson,et al.  Counting absolute numbers of molecules using unique molecular identifiers , 2011, Nature Methods.

[80]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[81]  M. Tomishima,et al.  Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling , 2009, Nature Biotechnology.

[82]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[83]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..