A hybrid approach to the sentiment analysis problem at the sentence level

The objective of this article is to present a hybrid approach to the Sentiment Analysis problem at the sentence level. This new method uses natural language processing (NLP) essential techniques, a sentiment lexicon enhanced with the assistance of SentiWordNet, and fuzzy sets to estimate the semantic orientation polarity and its intensity for sentences, which provides a foundation for computing with sentiments. The proposed hybrid method is applied to three different data-sets and the results achieved are compared to those obtained using Naive Bayes and Maximum Entropy techniques. It is demonstrated that the presented hybrid approach is more accurate and precise than both Naive Bayes and Maximum Entropy techniques, when the latter are utilised in isolation. In addition, it is shown that when applied to datasets containing snippets, the proposed method performs similarly to state of the art techniques.

[1]  Ali Selamat,et al.  Combination of active learning and self-training for cross-lingual sentiment classification with density analysis of unlabelled samples , 2015, Inf. Sci..

[2]  Francisco Chiclana,et al.  Uninorm trust propagation and aggregation methods for group decision making in social network with four tuple information , 2016, Knowl. Based Syst..

[3]  Lotfi A. Zadeh,et al.  A New Direction in AI: Toward a Computational Theory of Perceptions , 2001, AI Mag..

[4]  Christopher Potts,et al.  Learning Word Vectors for Sentiment Analysis , 2011, ACL.

[5]  Dimitar Filev,et al.  Induced ordered weighted averaging operators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Hinrich Schütze,et al.  Book Reviews: Foundations of Statistical Natural Language Processing , 1999, CL.

[7]  Naif Alajlan,et al.  An intelligent interactive approach to group aggregation of subjective probabilities , 2015, Knowl. Based Syst..

[8]  Ronen Feldman,et al.  Techniques and applications for sentiment analysis , 2013, CACM.

[9]  Bo Pang,et al.  Seeing Stars: Exploiting Class Relationships for Sentiment Categorization with Respect to Rating Scales , 2005, ACL.

[10]  Hamido Fujita,et al.  A Hybrid Approach to Sentiment Analysis with Benchmarking Results , 2016, IEA/AIE.

[11]  Martine De Cock,et al.  Fuzzy modifiers based on fuzzy relations , 2004, Inf. Sci..

[12]  Eugene Charniak,et al.  Statistical Techniques for Natural Language Parsing , 1997, AI Mag..

[13]  Francisco Chiclana,et al.  Main Concepts, State of the Art and Future Research Questions in Sentiment Analysis. , 2015 .

[14]  G. Miller,et al.  Contextual correlates of semantic similarity , 1991 .

[15]  Hejab M. Alfawareh,et al.  Resolving Ambiguous Entity through Context Knowledge and Fuzzy Approach , 2011 .

[16]  Danushka Bollegala,et al.  Metaphor Interpretation Using Paraphrases Extracted from the Web , 2013, PloS one.

[17]  Hamido Fujita,et al.  Cross-ratio uninorms as an effective aggregation mechanism in sentiment analysis , 2017, Knowl. Based Syst..

[18]  Francisco Herrera,et al.  Integrating three representation models in fuzzy multipurpose decision making based on fuzzy preference relations , 1998, Fuzzy Sets Syst..

[19]  George A. Vouros,et al.  Investigating Metaphorical Language in Sentiment Analysis: A Sense-to-Sentiment Perspective , 2012, TSLP.

[20]  Eyke Hüllermeier,et al.  Fuzzy methods in machine learning and data mining: Status and prospects , 2005, Fuzzy Sets Syst..

[21]  Enrique Herrera-Viedma,et al.  Confidence-consistency driven group decision making approach with incomplete reciprocal intuitionistic preference relations , 2015, Knowl. Based Syst..

[22]  Anna Korhonen,et al.  Metaphor Identification Using Verb and Noun Clustering , 2010, COLING.

[23]  William C. Mann,et al.  Rhetorical Structure Theory: Toward a functional theory of text organization , 1988 .

[24]  Dominic Widdows,et al.  Geometry and Meaning , 2004, Computational Linguistics.

[25]  Regan L. Mandryk,et al.  A fuzzy physiological approach for continuously modeling emotion during interaction with play technologies , 2007, Int. J. Hum. Comput. Stud..

[26]  Michael L. Littman,et al.  Measuring praise and criticism: Inference of semantic orientation from association , 2003, TOIS.

[27]  R. Kent Dybvig,et al.  The Scheme Programming Language , 1995 .

[28]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[29]  Alfred V. Aho,et al.  The Theory of Parsing, Translation, and Compiling , 1972 .

[30]  Markus Dickinson,et al.  Computational approaches to morphology and syntax (review) , 2010 .

[31]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL.

[32]  Xin Wang,et al.  Chinese Sentence-Level Sentiment Classification Based on Fuzzy Sets , 2010, COLING.

[33]  Michael L. Littman,et al.  Unsupervised Learning of Semantic Orientation from a Hundred-Billion-Word Corpus , 2002, ArXiv.

[34]  Zhendong Niu,et al.  Automatic construction of domain-specific sentiment lexicon based on constrained label propagation , 2014, Knowl. Based Syst..

[35]  José Ignacio Peláez,et al.  Analysis of OWA operators in decision making for modelling the majority concept , 2007, Appl. Math. Comput..

[36]  Enrique Herrera-Viedma,et al.  Fuzzy decision making and consensus: Challenges , 2015, J. Intell. Fuzzy Syst..

[37]  Jacek Malczewski,et al.  Using the fuzzy majority approach for GIS-based multicriteria group decision-making , 2010, Comput. Geosci..

[38]  D. Spalding The Principles of Psychology , 1873, Nature.

[39]  ChiclanaFrancisco,et al.  A hybrid approach to the sentiment analysis problem at the sentence level , 2016 .

[40]  H. B. Mitchell,et al.  A Modified OWA Operator and its Use in Lossless DPCM Image Compression , 1997, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[41]  Erik Cambria,et al.  Sentic patterns: Dependency-based rules for concept-level sentiment analysis , 2014, Knowl. Based Syst..

[42]  Enrique Herrera-Viedma,et al.  Aggregation of unbalanced fuzzy linguistic information in decision problems based on Type-1 OWA operator , 2015, 2015 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[43]  H. Zimmermann,et al.  Fuzzy Set Theory and Its Applications , 1993 .

[44]  Vadlamani Ravi,et al.  A survey on opinion mining and sentiment analysis: Tasks, approaches and applications , 2015, Knowl. Based Syst..

[45]  J. R. Firth,et al.  A Synopsis of Linguistic Theory, 1930-1955 , 1957 .

[46]  Witold Pedrycz,et al.  Linguistic models and linguistic modeling , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[47]  Steven Abney,et al.  Semisupervised Learning for Computational Linguistics , 2007 .

[48]  Francisco Chiclana,et al.  Linguistic majorities with difference in support , 2014, Appl. Soft Comput..

[49]  Mukesh A. Zaveri,et al.  Opinion Mining from Online User Reviews Using Fuzzy Linguistic Hedges , 2014, Appl. Comput. Intell. Soft Comput..

[50]  M. Schlick,et al.  Geometrie und Erfahrung , 1921, Naturwissenschaften.

[51]  Lotfi A. Zadeh,et al.  Precisiated Natural Language (PNL) , 2004, AI Mag..

[52]  Colorado Reed Latent Dirichlet Allocation: Towards a Deeper Understanding , 2012 .

[53]  M. D. Cock,et al.  Modelling linguistic expressions using fuzzy relations. , 2000 .

[54]  Mihai Nadin T. Winograd, Language as a Cognitive Process, Volume I: Syntax , 1985, Artif. Intell..

[55]  J. R. Firth,et al.  Studies in Linguistic Analysis. , 1974 .

[56]  Noam Chomsky,et al.  वाक्यविन्यास का सैद्धान्तिक पक्ष = Aspects of the theory of syntax , 1965 .

[57]  Ethem Alpaydin,et al.  Introduction to machine learning , 2004, Adaptive computation and machine learning.

[58]  Fanyong Meng,et al.  A new method for group decision making with incomplete fuzzy preference relations , 2015, Knowl. Based Syst..

[59]  R. Plutchik The emotions: Facts, theories and a new model. , 1964 .

[60]  Erik Cambria,et al.  SenticNet 3: A Common and Common-Sense Knowledge Base for Cognition-Driven Sentiment Analysis , 2014, AAAI.

[61]  Naomie Salim,et al.  Fuzzy Logic Based Method for Improving Text Summarization , 2009, ArXiv.

[62]  M. de Rijke,et al.  UvA-DARE ( Digital Academic Repository ) Using WordNet to measure semantic orientations of adjectives , 2004 .

[63]  Bernadette Bouchon-Meunier,et al.  Expressions of graduality for sentiments analysis — A survey , 2010, International Conference on Fuzzy Systems.

[64]  Chunfu Wei,et al.  A decision-making method based on Linguistic Aggregation operators for coal mine safety evaluation , 2010, 2010 IEEE International Conference on Intelligent Systems and Knowledge Engineering.

[65]  Arno Scharl,et al.  Extracting and Grounding Contextualized Sentiment Lexicons , 2013, IEEE Intelligent Systems.

[66]  JiangJiang,et al.  Consensus building in group decision making based on multiplicative consistency with incomplete reciprocal preference relations , 2016 .

[67]  M. S. Usha,et al.  Analysis of sentiments using unsupervised learning techniques , 2013, 2013 International Conference on Information Communication and Embedded Systems (ICICES).

[68]  Janyce Wiebe,et al.  Effects of Adjective Orientation and Gradability on Sentence Subjectivity , 2000, COLING.

[69]  Björn W. Schuller,et al.  New Avenues in Opinion Mining and Sentiment Analysis , 2013, IEEE Intelligent Systems.

[70]  Bruce G. Buchanan,et al.  The MYCIN Experiments of the Stanford Heuristic Programming Project , 1985 .

[71]  Enrique Herrera-Viedma,et al.  Trust based consensus model for social network in an incomplete linguistic information context , 2015, Appl. Soft Comput..

[72]  Kenneth Ward Church,et al.  Using Statistics in Lexical Analysis , 2003, Lexical Acquisition: Exploiting On-Line Resources to Build a Lexicon.

[73]  Pedro M. Domingos A few useful things to know about machine learning , 2012, Commun. ACM.

[74]  P. Ekman Emotion in the human face , 1982 .

[75]  Francisco Chiclana,et al.  A social network analysis trust-consensus based approach to group decision-making problems with interval-valued fuzzy reciprocal preference relations , 2014, Knowl. Based Syst..

[76]  S. Jusoh,et al.  Applying fuzzy sets for opinion mining , 2013, 2013 International Conference on Computer Applications Technology (ICCAT).

[77]  Francisco Chiclana,et al.  Multiplicative consistency of intuitionistic reciprocal preference relations and its application to missing values estimation and consensus building , 2014, Knowl. Based Syst..

[78]  Francisco Herrera,et al.  Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations , 2007, Eur. J. Oper. Res..

[79]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[80]  Ekaterina Shutova,et al.  Models of Metaphor in NLP , 2010, ACL.

[81]  John McCarthy,et al.  Recursive functions of symbolic expressions and their computation by machine, Part I , 1960, Commun. ACM.

[82]  Alok N. Choudhary,et al.  MuSES: Multilingual Sentiment Elicitation System for Social Media Data , 2014, IEEE Intelligent Systems.

[83]  L. A. ZADEH,et al.  The concept of a linguistic variable and its application to approximate reasoning - I , 1975, Inf. Sci..

[84]  Akshi Kumar,et al.  Sentiment Analysis: A Perspective on its Past, Present and Future , 2012 .

[85]  S. Gottwald A Treatise on Many-Valued Logics , 2001 .

[86]  Imre J. Rudas,et al.  Information Aggregation in Intelligent Systems Using Generalized Operators , 2006, Int. J. Comput. Commun. Control.

[87]  Ronald R. Yager,et al.  Quantifier guided aggregation using OWA operators , 1996, Int. J. Intell. Syst..

[88]  George J. Klir,et al.  Fuzzy sets and fuzzy logic - theory and applications , 1995 .

[89]  John Yen,et al.  FLAME—Fuzzy Logic Adaptive Model of Emotions , 2000, Autonomous Agents and Multi-Agent Systems.

[90]  Gerald Jay Sussman,et al.  An Interpreter for Extended Lambda Calculus , 1975 .

[91]  Isa Maks,et al.  A verb lexicon model for deep sentiment analysis and opinion mining applications , 2011, WASSA@ACL.

[92]  Renata Vieira,et al.  Some clues on irony detection in tweets , 2013, WWW '13 Companion.

[93]  A. Ortony,et al.  The psychological foundations of the affective lexicon. , 1987 .

[94]  Hwee Tou Ng,et al.  Corpus-Based Approaches to Semantic Interpretation in NLP , 1997, AI Mag..

[95]  Janyce Wiebe,et al.  Tracking Point of View in Narrative , 1994, Comput. Linguistics.

[96]  Claire Cardie,et al.  Empirical Methods in Information Extraction , 1997, AI Mag..

[97]  Erik Cambria,et al.  Sentic Computing: A Common-Sense-Based Framework for Concept-Level Sentiment Analysis , 2015 .

[98]  Kim Schouten,et al.  Survey on Aspect-Level Sentiment Analysis , 2016, IEEE Transactions on Knowledge and Data Engineering.

[99]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[100]  Gang Kou,et al.  Modelling influence in group decision making , 2016, Soft Computing.

[101]  Peter D. Turney Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL , 2001, ECML.

[102]  Maite Taboada,et al.  Lexicon-Based Methods for Sentiment Analysis , 2011, CL.

[103]  J. Kacprzyk Group decision making with a fuzzy linguistic majority , 1986 .

[104]  A. M. H. Elyasir,et al.  Evolution of Opinion Mining , 2013 .

[105]  Diego Reforgiato Recupero,et al.  AVA: Adjective-Verb-Adverb Combinations for Sentiment Analysis , 2008, IEEE Intelligent Systems.

[106]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[107]  Stephen R. Marsland,et al.  Machine Learning - An Algorithmic Perspective , 2009, Chapman and Hall / CRC machine learning and pattern recognition series.

[108]  Benjamin Ka-Yin T'sou,et al.  Combining a large sentiment lexicon and machine learning for subjectivity classification , 2010, 2010 International Conference on Machine Learning and Cybernetics.

[109]  WuJian,et al.  A social network analysis trust-consensus based approach to group decision-making problems with interval-valued fuzzy reciprocal preference relations , 2014 .

[110]  Fakhri Karray,et al.  Semantic Understanding of General Linguistic Items by Means of Fuzzy Set Theory , 2007, IEEE Transactions on Fuzzy Systems.

[111]  Minh Le Nguyen,et al.  Linguistic Features for Subjectivity Classification , 2012, 2012 International Conference on Asian Language Processing.

[112]  Eugene Charniak,et al.  Statistical language learning , 1997 .

[113]  Hamido Fujita,et al.  A Consensus Approach to the Sentiment Analysis Problem Driven by Support‐Based IOWA Majority , 2017, Int. J. Intell. Syst..

[114]  Philip S. Yu,et al.  A holistic lexicon-based approach to opinion mining , 2008, WSDM '08.

[115]  Francisco Herrera,et al.  Linguistic decision analysis: steps for solving decision problems under linguistic information , 2000, Fuzzy Sets Syst..

[116]  Paolo Gastaldo,et al.  An ELM-based model for affective analogical reasoning , 2015, Neurocomputing.

[117]  Lotfi A. Zadeh From Computing with Numbers to Computing with Words - From Manipulation of Measurements to Manipulation of Perceptions , 2000, Intelligent Systems and Soft Computing.

[118]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[119]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[120]  Jaime G. Carbonell,et al.  Metaphor : an inescapable phenomenon in natural language comprehension , 1981 .

[121]  Erik Cambria,et al.  Big Social Data Analysis , 2013 .

[122]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[123]  Hamido Fujita,et al.  A Consensus Approach to Sentiment Analysis , 2017, IEA/AIE.

[124]  C. Darwin The Expression of the Emotions in Man and Animals , .

[125]  Mehdi Dastani,et al.  The OCC Model Revisited , 2009 .

[126]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[127]  K. Raja,et al.  Detecting and resolving spatial ambiguity in text using named entity extraction and self learning fuzzy logic techniques , 2013, ArXiv.

[128]  Gang Qian,et al.  Extended IOWA Operator and ITS Application to Group Decision Making with Linguistic Preference Information , 2006, 2006 International Conference on Machine Learning and Cybernetics.

[129]  Francisco Chiclana,et al.  Type-1 OWA methodology to consensus reaching processes in multi-granular linguistic contexts , 2014, Knowl. Based Syst..

[130]  Janusz S. Bień,et al.  Beliefs, Points of View, and Multiple Environments , 1983, Cogn. Sci..

[131]  George A. Miller,et al.  Introduction to WordNet: An On-line Lexical Database , 1990 .

[132]  Erik Cambria,et al.  Affective Computing and Sentiment Analysis , 2016, IEEE Intelligent Systems.

[133]  Endre Pap,et al.  Information aggregation in intelligent systems: An application oriented approach , 2013, Knowl. Based Syst..

[134]  Erik Cambria,et al.  Sentic Computing: Techniques, Tools, and Applications , 2012 .

[135]  Andrea Esuli,et al.  SENTIWORDNET: A Publicly Available Lexical Resource for Opinion Mining , 2006, LREC.

[136]  D. Nauck,et al.  Data Mining with Fuzzy Methods : Status and Perspectives , 1999 .

[137]  D. R. Heise,et al.  Structure of Emotions , 1988 .

[138]  Andrea Esuli,et al.  SentiWordNet: A High-Coverage Lexical Resource for Opinion Mining , 2006 .

[139]  Bo Li,et al.  Multiple attribute decision making based on induced OWA operator , 2009, 2009 IEEE International Conference on Fuzzy Systems.

[140]  Lillian Lee,et al.  Opinion Mining and Sentiment Analysis , 2008, Found. Trends Inf. Retr..

[141]  Jong-Seok Lee,et al.  Data-driven integration of multiple sentiment dictionaries for lexicon-based sentiment classification of product reviews , 2014, Knowl. Based Syst..

[142]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[143]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[144]  Francisco Herrera,et al.  Cardinal Consistency of Reciprocal Preference Relations: A Characterization of Multiplicative Transitivity , 2009, IEEE Transactions on Fuzzy Systems.

[145]  Daniel Sánchez,et al.  Computational Models of Affect and Fuzzy Logic , 2011, EUSFLAT Conf..

[146]  Mike Y. Chen,et al.  Yahoo! for Amazon: Sentiment Extraction from Small Talk on the Web , 2001 .

[147]  William Blewitt,et al.  Exploration of Emotion Modelling Through Fuzzy Logic , 2012 .

[148]  Lotfi A. Zadeh,et al.  Is there a need for fuzzy logic? , 2008, NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy Information Processing Society.

[149]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[150]  Janyce Wiebe Identifying Subjective Characters in Narrative , 1990, COLING.

[151]  Mark Levene,et al.  Combining lexicon and learning based approaches for concept-level sentiment analysis , 2012, WISDOM '12.

[152]  M. Inés Torres,et al.  Extracting relevant knowledge for the detection of sarcasm and nastiness in the social web , 2014, Knowl. Based Syst..

[153]  Agneta H. Fischer,et al.  Emotion in Social Relations: Cultural, Group, and Interpersonal Processes , 2004 .

[154]  Huchang Liao,et al.  Isomorphic Multiplicative Transitivity for Intuitionistic and Interval-Valued Fuzzy Preference Relations and Its Application in Deriving Their Priority Vectors , 2018, IEEE Transactions on Fuzzy Systems.

[155]  Khairullah Khan,et al.  Sentiment Classification from Online Customer Reviews Using Lexical Contextual Sentence Structure , 2011, ICSECS.

[156]  A. Dobrescu Methods and resources for sentiment analysis in multilingual documents of different text types , 2011 .

[157]  Ronald R. Yager,et al.  The power average operator , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[158]  Bing Liu,et al.  Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data , 2006, Data-Centric Systems and Applications.

[159]  Pero Subasic,et al.  Affect analysis of text using fuzzy semantic typing , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[160]  Björn W. Schuller,et al.  Knowledge-Based Approaches to Concept-Level Sentiment Analysis , 2013, IEEE Intell. Syst..

[161]  Steven Abney,et al.  Statistical Methods and Linguistics , 2002 .

[162]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[163]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decision-making , 1988 .

[164]  Kathleen R. McKeown,et al.  Predicting the semantic orientation of adjectives , 1997 .

[165]  Bo Pang,et al.  A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts , 2004, ACL.

[166]  Christopher D. Manning,et al.  Baselines and Bigrams: Simple, Good Sentiment and Topic Classification , 2012, ACL.

[167]  Teresa León,et al.  Using Induced Ordered Weighted Averaging (IOWA) Operators for Aggregation in Cross‐Efficiency Evaluations , 2014, Int. J. Intell. Syst..

[168]  Gloria Bordogna,et al.  A Multi Criteria Group Decision Making Process Based on the Soft Fusion of Coherent Evaluations of Spatial alternatives , 2014 .

[169]  Eric Brill,et al.  Reducing the human overhead in text categorization , 2006, KDD '06.

[170]  Janyce Wiebe,et al.  Learning Subjective Adjectives from Corpora , 2000, AAAI/IAAI.

[171]  Lotfi A. Zadeh,et al.  Similarity relations and fuzzy orderings , 1971, Inf. Sci..

[172]  Marti A. Hearst Direction-based text interpretation as an information access refinement , 1992 .

[173]  Andrew Ortony,et al.  The Cognitive Structure of Emotions , 1988 .

[174]  J. Buckley,et al.  An Introduction to Fuzzy Logic and Fuzzy Sets , 2002 .

[175]  Eric Brill,et al.  Some Advances in Transformation-Based Part of Speech Tagging , 1994, AAAI.

[176]  Masrah Azrifah Azmi Murad,et al.  Sentiment classification of customer reviews based on fuzzy logic , 2010, 2010 International Symposium on Information Technology.

[177]  Wei Wei Analyzing Text Data for Opinion Mining , 2011, NLDB.

[178]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[179]  Ronald R. Yager,et al.  Modeling the concept of majority opinion in group decision making , 2006, Inf. Sci..

[180]  Uzay Kaymak,et al.  Polarity analysis of texts using discourse structure , 2011, CIKM '11.

[181]  Ajay Rana,et al.  Fuzzy sets in Data mining- A Review , 2013 .

[182]  Andrew Y. Ng,et al.  Semantic Compositionality through Recursive Matrix-Vector Spaces , 2012, EMNLP.

[183]  Gang Kou,et al.  Modeling Influence In Group Decision Making , 2015 .

[184]  Deba Prasad Mandal,et al.  Finding Opinion Strength Using Fuzzy Logic on Web Reviews , 2011 .

[185]  Lei Zhang,et al.  Combining lexicon-based and learning-based methods for twitter sentiment analysis , 2011 .

[186]  Dragan Jocic,et al.  Distributivity equations and Mayor's aggregation operators , 2013, Knowl. Based Syst..

[187]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[188]  Lotfi A. Zadeh,et al.  A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[189]  Andrea Esuli,et al.  Determining the semantic orientation of terms through gloss classification , 2005, CIKM '05.

[190]  Radoslaw Niewiadomski,et al.  Intelligent Expressions of Emotions , 2005, ACII.

[191]  Igor Kononenko,et al.  Machine Learning and Data Mining: Introduction to Principles and Algorithms , 2007 .

[192]  Francisco Chiclana,et al.  Type‐Reduction of General Type‐2 Fuzzy Sets: The Type‐1 OWA Approach , 2013, Int. J. Intell. Syst..

[193]  Patrick Pantel,et al.  Discovering word senses from text , 2002, KDD.

[194]  Ann Banfield,et al.  Unspeakable Sentences : Narration and Representation in the Language of Fiction , 1982 .

[195]  G. A. Miller THE PSYCHOLOGICAL REVIEW THE MAGICAL NUMBER SEVEN, PLUS OR MINUS TWO: SOME LIMITS ON OUR CAPACITY FOR PROCESSING INFORMATION 1 , 1956 .

[196]  Stefan M. Rüger,et al.  Weakly Supervised Joint Sentiment-Topic Detection from Text , 2012, IEEE Transactions on Knowledge and Data Engineering.

[197]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[198]  Songbo Tan,et al.  A survey on sentiment detection of reviews , 2009, Expert Syst. Appl..

[199]  Francisco Chiclana,et al.  Social Network Decision Making with Linguistic Trustworthiness–Based Induced OWA Operators , 2014, Int. J. Intell. Syst..

[200]  Ellen Riloff,et al.  Finding Mutual Benefit between Subjectivity Analysis and Information Extraction , 2011, IEEE Transactions on Affective Computing.

[201]  Felipe Bravo-Marquez,et al.  Meta-level sentiment models for big social data analysis , 2014, Knowl. Based Syst..

[202]  János Fodor,et al.  On Rational Uninorms , 2000 .

[203]  Robert Ivor John,et al.  Type-1 OWA operators for aggregating uncertain information with uncertain weights induced by type-2 linguistic quantifiers , 2008, Fuzzy Sets Syst..

[204]  Kenneth Ward Church,et al.  Word Association Norms, Mutual Information, and Lexicography , 1989, ACL.

[205]  Bing Liu,et al.  Sentiment Analysis and Opinion Mining , 2012, Synthesis Lectures on Human Language Technologies.

[206]  Mukesh A. Zaveri,et al.  Semisupervised Learning Based Opinion Summarization and Classification for Online Product Reviews , 2013, Appl. Comput. Intell. Soft Comput..

[207]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[208]  R. Yager Families of OWA operators , 1993 .

[209]  Ekaterina Shutova,et al.  Automatic Metaphor Interpretation as a Paraphrasing Task , 2010, NAACL.

[210]  Janyce Wiebe,et al.  Articles: Recognizing Contextual Polarity: An Exploration of Features for Phrase-Level Sentiment Analysis , 2009, CL.

[211]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[212]  Ronald R. Yager,et al.  Induced aggregation operators , 2003, Fuzzy Sets Syst..

[213]  Patrick Pantel,et al.  From Frequency to Meaning: Vector Space Models of Semantics , 2010, J. Artif. Intell. Res..

[214]  Bas R. Steunebrink The logical structure of emotions , 2010 .

[215]  Suad Alhojely,et al.  Sentiment Analysis and Opinion Mining: A Survey , 2016 .

[216]  Haixun Wang,et al.  Guest Editorial: Big Social Data Analysis , 2014, Knowl. Based Syst..

[217]  Mayura Kinikar,et al.  Machine Learning Algorithms for Opinion Mining and Sentiment Classification , 2013 .

[218]  Christopher Potts,et al.  Recursive Deep Models for Semantic Compositionality Over a Sentiment Treebank , 2013, EMNLP.

[219]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[220]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[221]  Vasileios Hatzivassiloglou,et al.  Towards the Automatic Identification of Adjectival Scales: Clustering Adjectives According to Meaning , 1993, ACL.

[222]  J. Kacprzyk,et al.  Aggregation and Fusion of Imperfect Information , 2001 .

[223]  Sean A. Spence,et al.  Descartes' Error: Emotion, Reason and the Human Brain , 1995 .

[224]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[225]  Robert Dale,et al.  Classical Approaches to Natural Language Processing , 2010, Handbook of Natural Language Processing.

[226]  Rada Mihalcea,et al.  A Bootstrapping Method for Building Subjectivity Lexicons for Languages with Scarce Resources , 2008, LREC.

[227]  E. Vesterinen,et al.  Affective Computing , 2009, Encyclopedia of Biometrics.

[228]  Gerard Salton,et al.  A vector space model for automatic indexing , 1975, CACM.

[229]  Radko Mesiar,et al.  On the Relationship of Associative Compensatory operators to triangular Norms and Conorms , 1996, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[230]  René Witte,et al.  Fuzzy Coreference Resolution for Summarization , 2003 .

[231]  Uzay Kaymak,et al.  Exploiting emoticons in sentiment analysis , 2013, SAC '13.

[232]  C. W. Hughes Emotion: Theory, Research and Experience , 1982 .

[233]  Robert Ivor John,et al.  Alpha-Level Aggregation: A Practical Approach to Type-1 OWA Operation for Aggregating Uncertain Information with Applications to Breast Cancer Treatments , 2011, IEEE Transactions on Knowledge and Data Engineering.

[234]  R. Kent Dybvig The Scheme Programming Language, 4th Edition , 2009 .

[235]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[236]  Lina Zhou,et al.  Movie Review Mining: a Comparison between Supervised and Unsupervised Classification Approaches , 2005, Proceedings of the 38th Annual Hawaii International Conference on System Sciences.

[237]  Uzay Kaymak,et al.  Exploiting Emoticons in Polarity Classification of Text , 2015, J. Web Eng..

[238]  Yue Lu,et al.  Automatic construction of a context-aware sentiment lexicon: an optimization approach , 2011, WWW.

[239]  Animesh Kar,et al.  Unsupervised Linguistic Approach for Sentiment Classification from Online Reviews Using Sentiwordnet 3.0 , 2013 .

[240]  Andrew McCallum,et al.  Using Maximum Entropy for Text Classification , 1999 .

[241]  Naif Alajlan,et al.  Some issues on the OWA aggregation with importance weighted arguments , 2016, Knowl. Based Syst..

[242]  Björn W. Schuller,et al.  Statistical Approaches to Concept-Level Sentiment Analysis , 2013, IEEE Intell. Syst..

[243]  Hamido Fujita,et al.  A hybrid approach to sentiment analysis , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[244]  Laurence Tianruo Yang,et al.  Fuzzy Logic with Engineering Applications , 1999 .

[245]  Bernard De Baets,et al.  Van Melle's combining function in MYCIN is a representable uninorm: An alternative proof , 1999, Fuzzy Sets Syst..