Optimal Schwarz Waveform Relaxation for the One Dimensional Wave Equation

We introduce a nonoverlapping variant of the Schwarz waveform relaxation algorithm for wave propagation problems with variable coefficients in one spatial dimension. We derive transmission conditions which lead to convergence of the algorithm in a number of iterations equal to the number of subdomains, independently of the length of the time interval. These optimal transmission conditions are in general nonlocal, but we show that the nonlocality depends on the time interval under consideration, and we introduce time windows to obtain optimal performance of the algorithm with local transmission conditions in the case of piecewise constant wave speed. We show that convergence in two iterations can be achieved independently of the number of subdomains in that case. The algorithm thus scales optimally with the number of subdomains, provided the time windows are chosen appropriately. For continuously varying coefficients we prove convergence of the algorithm with local transmission conditions using energy estimates. We then introduce a finite volume discretization which permits computations on nonmatching grids, and we prove convergence of the fully discrete Schwarz waveform relaxation algorithm. We finally illustrate our analysis with numerical experiments.

[1]  T. Chan,et al.  Domain decomposition algorithms , 1994, Acta Numerica.

[2]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[3]  Frédéric Nataf,et al.  A new cement to glue non-conforming grids with Robin interface conditions: The finite volume case , 2007, Numerische Mathematik.

[4]  Hongkai Zhao,et al.  Absorbing boundary conditions for domain decomposition , 1998 .

[5]  M. Gander Overlapping Schwarz Waveform Relaxation for Parabolic Problems , 1998 .

[6]  M. Gander,et al.  Optimal Convergence for Overlapping and Non-Overlapping Schwarz Waveform Relaxation , 1999 .

[7]  Ding Lee,et al.  Finite‐difference solution to the parabolic wave equation , 1981 .

[8]  Alberto L. Sangiovanni-Vincentelli,et al.  The Waveform Relaxation Method for Time-Domain Analysis of Large Scale Integrated Circuits , 1982, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[9]  Morten Bjørhus,et al.  A note on the convergence of discretized dynamic iteration , 1995 .

[10]  Stefan Vandewalle,et al.  Multigrid Waveform Relaxation on Spatial Finite Element Meshes: The Discrete-Time Case , 1996, SIAM J. Sci. Comput..

[11]  Roland Glowinski,et al.  A Domain Decomposition Method for the Acoustic Wave Equation with Discontinuous Coefficients and Grid Change , 1997 .

[12]  Frédéric Nataf,et al.  A new Cement to Glue non-conforming Grids with Robin interface conditions: the finite element case , 2002 .

[13]  Martin J. Gander,et al.  Space-Time Continuous Analysis of Waveform Relaxation for the Heat Equation , 1998, SIAM J. Sci. Comput..

[14]  Marc Garbey,et al.  Asymptotic and numerical methods for partial differential equations with critical parameters , 1993 .

[15]  Danping Yang,et al.  Additive Schwarz methods for parabolic problems , 2005, Appl. Math. Comput..

[16]  Frédéric Nataf,et al.  Optimal Interface Conditions for Domain Decomposition Methods , 1994 .

[17]  David E. Keyes,et al.  Additive Schwarz Methods for Hyperbolic Equations , 1998 .

[18]  G. Meurant A domain decomposition method for parabolic problems , 1991 .

[19]  Zi-Cai Li,et al.  Schwarz Alternating Method , 1998 .

[20]  Frédéric Nataf,et al.  FACTORIZATION OF THE CONVECTION-DIFFUSION OPERATOR AND THE SCHWARZ ALGORITHM , 1995 .

[21]  J. Strikwerda Finite Difference Schemes and Partial Differential Equations , 1989 .

[22]  Xiao-Chuan Cai,et al.  Additive Schwarz algorithms for parabolic convection-diffusion equations , 1991 .

[23]  Anthony T. Patera,et al.  Domain Decomposition by the Mortar Element Method , 1993 .

[24]  Herbert B. Keller,et al.  Space-time domain decomposition for parabolic problems , 2002, Numerische Mathematik.

[25]  Xiao-Chuan Cai,et al.  Multiplicative Schwarz Methods for Parabolic Problems , 1994, SIAM J. Sci. Comput..

[26]  Olivier Pironneau,et al.  Non-overlapping domain decomposition for evolution operators , 2000 .

[27]  Hongkai Zhao,et al.  Overlapping Schwarz Waveform Relaxation for Parabolic Problems in Higher Dimensions , 1997 .

[28]  Patrick Joly,et al.  Une méthode de raffinement de maillage espace-temps pour le système de Maxwell en dimension un , 1999 .

[29]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[30]  Christopher R Anderson On Domain Decomposition , 1985 .

[31]  O. Nevanlinna,et al.  Convergence of dynamic iteration methods for initial value problems , 1987 .

[32]  Barry Smith,et al.  Domain Decomposition Methods for Partial Differential Equations , 1997 .

[33]  Laurence Halpern,et al.  Absorbing boundary conditions for the discretization schemes of the one-dimensional wave equation , 1982 .

[34]  L. Trefethen Instability of difference models for hyperbolic initial boundary value problems , 1984 .

[35]  O. Nevanlinna Remarks on Picard-Lindelöf iteration , 1989 .

[36]  Frédéric Nataf,et al.  Convergence rate of some domain decomposition methods for overlapping and nonoverlapping subdomains , 1997 .

[37]  Frédéric Nataf,et al.  Méthode de décomposition de domaine pour l'équation d'advection-diffusion , 1991 .

[38]  O. Nevanlinna Remarks on Picard-Lindelöf iteration , 1989 .

[39]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .