Construction of a Production Line for Auxetic Structures Using Novel Modelling Method*

Auxetic materials have shown a great potential in various fields. Through additive manufacturing, auxetic structures could be easily produced. However, numrous and complex structures of them lead to a complicated modelling process. This paper presents a design, analyse, and fabrication line for auxetic materials. A novel modelling method is applied to make modelling process efficient and accurate.

[1]  Constantinos Mavroidis,et al.  Rapid prototyping of robotic systems , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Levi H. Dudte,et al.  Geometric mechanics of periodic pleated origami. , 2012, Physical review letters.

[3]  L. Froyen,et al.  Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting , 2004 .

[4]  Tim C. Lueth,et al.  Automatic Design in Matlab Using PDE Toolbox for Shape and Topology Optimization , 2019 .

[5]  Kenneth E. Evans,et al.  Auxetic two-dimensional polymer networks. An example of tailoring geometry for specific mechanical properties , 1995 .

[6]  Tim Lüth,et al.  Extension of Matlab's PDE Toolbox for Developing Bionic Structural Optimization Methods: Overlapping Region Concept , 2019, RAAD.

[7]  Hong Hu,et al.  A review on auxetic structures and polymeric materials , 2010 .

[8]  Tim C. Lüth,et al.  Berechnete Erzeugung von dreidimensionalen Oberflächenmodellen im STL-Format aus der Beschreibung planarer Mechanismen für die generative Fertigung durch selektives Lasersintern , 2013 .

[9]  Ruben Gatt,et al.  Hierarchical Auxetic Mechanical Metamaterials , 2015, Scientific Reports.

[10]  Tim C. Lueth SG-Library: Entwicklung einer konstruktiven MATLAB-Toolbox zur räumlichen Modellierung von Körpern, Gelenken und Getrieben , 2015 .

[11]  Ruben Gatt,et al.  Perforated Sheets Exhibiting Negative Poisson's Ratios , 2010 .

[12]  K. Bertoldi,et al.  Flexible mechanical metamaterials , 2017 .

[13]  M. Ashby,et al.  The mechanics of three-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[14]  Joseph N. Grima,et al.  Auxetic behavior from rotating squares , 2000 .

[15]  Ruben Gatt,et al.  On the properties of auxetic meta‐tetrachiral structures , 2008 .

[16]  Yunan Prawoto,et al.  Seeing auxetic materials from the mechanics point of view: A structural review on the negative Poisson’s ratio , 2012 .

[17]  M. Szilvi-Nagy,et al.  Analysis of STL files , 2003 .

[18]  A. Alderson,et al.  Auxetic materials , 2007 .

[19]  Matej Vesenjak,et al.  Auxetic Cellular Materials - a Review , 2016 .

[20]  Hod Lipson,et al.  Automatic Design and Manufacture of Soft Robots , 2012, IEEE Transactions on Robotics.

[21]  Jean-Pierre Kruth,et al.  Basic powder metallurgical aspects in selective metal powder sintering , 1996 .

[22]  Mahbubul Alam,et al.  Mechanism Design using Rapid Prototyping , 1999 .

[23]  Massimo Ruzzene,et al.  Elasto-static micropolar behavior of a chiral auxetic lattice , 2012 .

[24]  Goran Konjevod,et al.  Origami based Mechanical Metamaterials , 2014, Scientific Reports.

[25]  Roderic S. Lakes,et al.  Deformation mechanisms in negative Poisson's ratio materials: structural aspects , 1991 .

[26]  Yi Min Xie,et al.  Auxetic metamaterials and structures: a review , 2018 .

[27]  E. Thomas,et al.  Micro‐/Nanostructured Mechanical Metamaterials , 2012, Advanced materials.

[28]  Ju Li,et al.  Engineering the shape and structure of materials by fractal cut , 2014, Proceedings of the National Academy of Sciences.

[29]  L. Froyen,et al.  Lasers and materials in selective laser sintering , 2002 .

[30]  M. Ashby,et al.  The mechanics of two-dimensional cellular materials , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  Tim Lüth,et al.  Extension of the FEM Analysis Using the PDE-Toolbox of Matlab with Regard to Point Loads, Line Loads, and Freeform Surface Loads: Feature Surface Concept , 2018, 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO).