Explicit constructions of separating hash families from algebraic curves over finite fields

AbstractLet X be a set of order n and Y be a set of order m. An (n,m,{w1, w2})-separating hash family is a set $$\mathcal {F}$$ of N functions from X to Y such that for any $$X_1, X_2 \subseteq X$$ with $$X_1\cap X_2=\emptyset$$, |X1| = w1 and |X2| = w2, there exists an element $$f\in \mathcal {F}$$ such that $$f(X_1)\cap f(X_2)=\emptyset$$. In this paper, we provide explicit constructions of separating hash families using algebraic curves over finite fields. In particular, applying the Garcia–Stichtenoth curves, we obtain an infinite class of explicitly constructed (n,m,{w1,w2})–separating hash families with $$N=\mathcal {O}(\log\,n)$$ for fixed m, w1, and w2. Similar results for strong separating hash families are also obtained. As consequences of our main results, we present explicit constructions of infinite classes of frameproof codes, secure frameproof codes and identifiable parent property codes with length $$N=\mathcal {O}(\log\,n)$$ where n is the size of the codes. In fact, all the above explicit constructions of hash families and codes provide the best asymptotic behavior achieving the bound $$N=\mathcal {O}(\log\,n)$$, which substantially improve the results in [ 8, 15, 17] give an answer to the fifth open problem presented in [11].

[1]  T. van Trung,et al.  New Constructions for IPP Codes , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[2]  Dan Collusion-Secure Fingerprinting for Digital Data , 2002 .

[3]  J. H. Lint,et al.  Algebraic-geometric codes , 1992 .

[4]  Huaxiong Wang,et al.  Explicit Constructions of Perfect Hash Families from Algebraic Curves over Finite Fields , 2001, J. Comb. Theory, Ser. A.

[5]  Douglas R. Stinson,et al.  Generalized cover-free families , 2004, Discret. Math..

[6]  Douglas R. Stinson,et al.  Secure frameproof codes, key distribution patterns, group testing algorithms and related structures , 2000 .

[7]  H. Stichtenoth,et al.  On the Asymptotic Behaviour of Some Towers of Function Fields over Finite Fields , 1996 .

[8]  Gérard D. Cohen,et al.  A hypergraph approach to the identifying parent property: the case of multiple parents , 2001, Electron. Notes Discret. Math..

[9]  S. Hansen Rational Points on Curves over Finite Fields , 1995 .

[10]  Douglas R. Stinson,et al.  On Some Methods for Unconditionally Secure Key Distribution and Broadcast Encryption , 1997, Des. Codes Cryptogr..

[11]  Douglas R Stinson,et al.  New constructions for perfect hash families and related structures using combinatorial designs and codes , 2000 .

[12]  Pak Ching Li,et al.  Constructions of 2‐cover‐free families and related separating hash families , 2006 .

[13]  Douglas R. Stinson,et al.  Frameproof and IPP Codes , 2001, INDOCRYPT.

[14]  H. Niederreiter,et al.  Rational Points on Curves Over Finite Fields: Theory and Applications , 2001 .

[15]  Dongvu Tonien,et al.  Explicit Construction of Secure Frameproof Codes , 2005, IACR Cryptol. ePrint Arch..

[16]  Douglas R. Stinson,et al.  The Lovász Local Lemma and Its Applications to some Combinatorial Arrays , 2004, Des. Codes Cryptogr..

[17]  Jessica Staddon,et al.  Combinatorial properties of frameproof and traceability codes , 2001, IEEE Trans. Inf. Theory.

[18]  Henning Stichtenoth,et al.  Algebraic function fields and codes , 1993, Universitext.

[19]  Jun Ma,et al.  On codes with w-identifiable parent property , 2008 .