ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. II. MID-INFRARED PERIOD–LUMINOSITY RELATIONS

New mid-infrared period-luminosity (PL) relations are presented for RR Lyrae variables in the globular cluster M4 (NGC 6121). Accurate photometry was obtained for 37 RR Lyrae variables using observations from the Infrared Array Camera onboard the Spitzer Space Telescope. The dispersion of M4’s PL relations is 0.056, and the uncertainty in the slope is 0.11 mag. Additionally, we established calibrated PL relations at 3.6 and 4.5 µm using published Hubble Space Telescope geometric parallaxes of five Galactic RR Lyrae stars. The resulting band-averaged distance modulus for M4 is µ = 11.399± 0.007(stat)±0.080(syst)±0.015(cal)±0.020(ext). The systematic uncertainty will be greatly reduced when parallaxes of more stars become available from the GAIA mission. Optical and infrared periodcolor (PC) relations are also presented, and the lack of a MIR PC relation suggests that RR Lyrae stars are not affected by CO absorption in the 4.5 µm band. Subject headings: Stars: variables: RR Lyrae — Globular Clusters: individual: M4 — Stars: distances — Stars: horizontal branch

[1]  S. E. Persson,et al.  New Cepheid Period-Luminosity Relations for the Large Magellanic Cloud: 92 Near-Infrared Light Curves , 2004 .

[2]  G. S. Burley,et al.  THE CLUSTER AGES EXPERIMENT (CASE). V. ANALYSIS OF THREE ECLIPSING BINARIES IN THE GLOBULAR CLUSTER M4 , 2013, 1301.2946.

[3]  W. Baade,et al.  The Resolution of Messier 32, NGC 205, and the Central Region of the Andromeda Nebula , 1944 .

[4]  M. Dall'Ora,et al.  Optical and Near-Infrared UBVRIJHK Photometry for the RR Lyrae Stars in the Nearby Globular Cluster M4 (NGC 6121) , 2014, 1406.7531.

[5]  D. Kurtz The Impact of Large‐Scale Surveys on Pulsating Star Research: IAU Colloquium 176 , 2000 .

[6]  M. Still,et al.  Kepler photometry of the prototypical Blazhko star RR Lyr: an old friend seen in a new light , 2010, 1011.5908.

[7]  Danielle Alloin,et al.  Stellar candles for the extragalactic distance scale , 2003 .

[8]  Peter B. Stetson,et al.  ON THE AUTOMATIC DETERMINATION OF LIGHT-CURVE PARAMETERS FOR CEPHEID VARIABLES , 1996 .

[9]  G. Fazio,et al.  The Infrared Array Camera (IRAC) for the Spitzer Space Telescope , 2004, astro-ph/0405616.

[10]  Bruce W. Carney,et al.  The Baade-Wesselink Method and the Distances to RR Lyrae Stars. VIII. Comparisons with Other Techniques and Implications for Globular Cluster Distances and Ages , 1992 .

[11]  M. Marconi,et al.  Metal-rich RR Lyrae Variables. II. The Pulsational Scenario , 1997, astro-ph/9702083.

[12]  William E. Harris,et al.  A Catalog of Parameters for Globular Clusters in the Milky Way , 1996 .

[13]  R. Rood Metal-poor stars. V. Horizontal-branch morphology , 1973 .

[14]  E. Marchetti,et al.  ON A NEW NEAR-INFRARED METHOD TO ESTIMATE THE ABSOLUTE AGES OF STAR CLUSTERS: NGC 3201 AS A FIRST TEST CASE , 2009, 0912.0824.

[15]  George W. Preston,et al.  A Spectroscopic Study of the RR Lyrae Stars. , 1959 .

[16]  J. Castor On the Calculation of Linear, Nonadiabatic Pulsations of Stellar Models , 1971 .

[17]  J. Barnes,et al.  THE RR LYRAE STARS: NEW PERSPECTIVES , 2014 .

[18]  T. Barnes,et al.  An in-depth spectroscopic analysis of the Blazhko star RR Lyrae - I. Characterisation of the star: abundance analysis and fundamental parameters , 2010, 1004.5156.

[19]  A. J. Longmore,et al.  RR Lyrae stars in globular clusters : better distances from infrared measurements ? , 1986 .

[20]  G. Bono,et al.  Theoretical insights into the RR Lyrae K-band period–luminosity relation , 2001 .

[21]  Denise Wood,et al.  The IRAC point response function in the warm Spitzer mission , 2012, Other Conferences.

[22]  Michael J. West,et al.  The globular cluster system of the Galaxy. III: measurements of radial velocity and metallicity for 60 clusters and a compilation of metallicities for 121 clusters , 1984 .

[23]  Carnegie Observatories,et al.  ON THE DISTANCE OF THE GLOBULAR CLUSTER M4 (NGC 6121) USING RR LYRAE STARS. I. OPTICAL AND NEAR-INFRARED PERIOD–LUMINOSITY AND PERIOD–WESENHEIT RELATIONS , 2014, 1411.6826.

[24]  Thomas E. Lutz,et al.  ON THE USE OF TRIGONOMETRIC PARALLAXES FOR THE CALIBRATION OF LUMINOSITY SYSTEMS: THEORY , 1973 .

[25]  Peter B. Stetson,et al.  Robust variable star detection techniques suitable for automated searches: new results for NGC 1866 , 1993 .

[26]  J. Christensen-Dalsgaard,et al.  Does Kepler unveil the mystery of the Blazhko effect? First detection of period doubling in Kepler Blazhko RR Lyrae stars , 2010, 1007.3404.

[27]  Massimo Dall'Ora,et al.  A NEW REDDENING LAW FOR M4 , 2012, 1204.5719.

[28]  A. Sandage The Oosterhoff Period-Metallicity Relation for RR Lyrae Stars at the Blue Fundamental Edge of the Instability Strip. I. , 1993 .

[29]  Jeffrey D. Crane,et al.  The absolute magnitude of RRC variables from statistical parallax , 2013 .

[30]  R. Hanson A practical method to improve luminosity calibrations from trigonometric parallaxes. , 1979 .

[31]  British Ornithologists,et al.  Bulletin of the , 1999 .

[32]  G. Bono,et al.  CoRoT light curves of Blazhko RR Lyrae stars. Evidence of a strong correlation between phase and amplitude modulations of CoRoT ID 0105288363 , 2011 .

[33]  Wendy L. Freedman,et al.  A PRELIMINARY CALIBRATION OF THE RR LYRAE PERIOD–LUMINOSITY RELATION AT MID-INFRARED WAVELENGTHS: WISE DATA , 2013, 1308.3160.

[34]  R. Christy,et al.  A study of pulsation in RR Lyrae models. , 1966 .

[35]  Nathaniel R. Butler,et al.  Mid-infrared period–luminosity relations of RR Lyrae stars derived from the AllWISE Data Release , 2014, 1402.4449.

[36]  P. Th. Oosterhoff,et al.  Some remarks on the variable stars in globular clusters , 1939 .

[37]  E. Bernard,et al.  ON THE CENTRAL HELIUM-BURNING VARIABLE STARS OF THE LeoI DWARF SPHEROIDAL GALAXY , 2012, 1209.6496.

[38]  John P. Cox,et al.  On Second Helium Ionization as a Cause of Pulsational Instability in Stars. , 1963 .

[39]  Garching,et al.  Intrinsic iron spread and a new metallicity scale for globular clusters , 2009, 0910.0675.

[40]  B. Chaboyer,et al.  Globular Cluster Ages and the Formation of the Galactic Halo , 1995, astro-ph/9509063.

[41]  S. Hodson,et al.  Double-mode RR Lyrae variables in M15. , 1983 .

[42]  E. Wright,et al.  The Spitzer Space Telescope Mission , 2004, astro-ph/0406223.

[43]  Luca Casagrande,et al.  THE AGES OF 55 GLOBULAR CLUSTERS AS DETERMINED USING AN IMPROVED METHOD ALONG WITH COLOR–MAGNITUDE DIAGRAM CONSTRAINTS, AND THEIR IMPLICATIONS FOR BROADER ISSUES , 2013, 1308.2257.

[44]  M. Catelán,et al.  THE RR LYRAE VARIABLES AND HORIZONTAL BRANCH OF NGC 6656 (M22), , 2013, 1308.6573.

[45]  A catalogue of helium abundance indicators from globular cluster photometry , 1999, astro-ph/9911237.

[46]  Massimo Marengo,et al.  IRACproc: a software suite for processing and analyzing Spitzer/IRAC data , 2006, SPIE Astronomical Telescopes + Instrumentation.

[47]  The local group of galaxies , 1999, astro-ph/9908050.

[48]  A. S. Rastorguev,et al.  RR Lyrae variables: visual and infrared luminosities, intrinsic colours and kinematics , 2013, 1308.4727.

[49]  Nicole Nesvacil,et al.  DISTANCE SCALE ZERO POINTS FROM GALACTIC RR LYRAE STAR PARALLAXES , 2011, 1109.5631.

[50]  M. Catelan,et al.  The RR Lyrae Period-Luminosity Relation. I. Theoretical Calibration , 2004, astro-ph/0406067.

[51]  Peter B. Stetson,et al.  THE CENTER OF THE CORE-CUSP GLOBULAR CLUSTER M15: CFHT AND HST OBSERVATIONS, ALLFRAME REDUCTIONS , 1994 .

[52]  S. Degl'Innocenti,et al.  A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars , 2003 .

[53]  G. Bono,et al.  GALACTIC CEPHEIDS WITH SPITZER. I. LEAVITT LAW AND COLORS , 2009, 0911.2470.

[54]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 AND 4.5 μm IN THE MILKY WAY , 2012, 1209.4946.

[55]  T. S. van Albada,et al.  On the Two Oosterhoff Groups of Globular Clusters , 1973 .

[56]  E. Valenti,et al.  The RR Lyrae period–K-luminosity relation for globular clusters: an observational approach★ , 2006, astro-ph/0608397.

[57]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[58]  Giampaolo Piotto,et al.  THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VII. RELATIVE AGES , 2008, 0812.4541.

[59]  S. E. Persson,et al.  THE CARNEGIE HUBBLE PROGRAM: THE LEAVITT LAW AT 3.6 μm AND 4.5 μm IN THE LARGE MAGELLANIC CLOUD , 2011, 1108.4672.

[60]  D. Lambert Frontiers of stellar evolution , 1988 .