Two decades of terrestrial carbon fluxes from a carbon cycle data assimilation system (CCDAS)

This paper presents the space‐time distribution of terrestrial carbon fluxes for the period 1979–1999 generated by a terrestrial carbon cycle data assimilation system (CCDAS). CCDAS is based around the Biosphere Energy Transfer Hydrology model. We assimilate satellite observations of photosynthetically active radiation and atmospheric CO2 concentration observations in a two‐step process. The control variables for the assimilation are the parameters of the carbon cycle model. The optimized model produces a moderate fit to the seasonal cycle of atmospheric CO2 concentration and a good fit to its interannual variability. Long‐term mean fluxes show large uptakes over the northern midlatitudes and uptakes over tropical continents partly offsetting the prescribed efflux due to land use change. Interannual variability is dominated by the tropics. On interannual timescales the controlling process is net primary productivity (NPP) while for decadal changes the main driver is changes in soil respiration. An adjoint sensitivity analysis reveals that uncertainty in long‐term storage efficiency of soil carbon is the largest contributor to uncertainty in net flux.

[1]  Taro Takahashi,et al.  Constraints on the Global Atmospheric CO 2 Budget , 2007 .

[2]  R. Betts,et al.  Amazonian forest dieback under climate-carbon cycle projections for the 21st century , 2004 .

[3]  Philippe Ciais,et al.  Transcom 3 inversion intercomparison: Model mean results for the estimation of seasonal carbon sources and sinks , 2004, Global Biogeochemical Cycles.

[4]  J. Randerson,et al.  Continental-Scale Partitioning of Fire Emissions During the 1997 to 2001 El Niño/La Niña Period , 2003, Science.

[5]  B. Pinty,et al.  GEMI: a non-linear index to monitor global vegetation from satellites , 1992, Vegetatio.

[6]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[7]  M. Keller,et al.  Carbon in Amazon Forests: Unexpected Seasonal Fluxes and Disturbance-Induced Losses , 2003, Science.

[8]  Sander Houweling,et al.  CO 2 flux history 1982–2001 inferred from atmospheric data using a global inversion of atmospheric transport , 2003 .

[9]  Pang-Ning Tan,et al.  Continental-scale comparisons of terrestrial carbon sinks estimated from satellite data and ecosystem modeling 1982–1998 , 2003 .

[10]  Thomas Kaminski,et al.  An Example of an Automatic Differentiation-Based Modelling System , 2003, ICCSA.

[11]  Two decades of ocean CO2 sink and variability , 2003 .

[12]  S. Houweling,et al.  Time-dependent atmospheric CO2 inversions based on interannually varying tracer transport , 2003 .

[13]  P. Cox,et al.  How positive is the feedback between climate change and the carbon cycle? , 2003 .

[14]  Shamil Maksyutov,et al.  TransCom 3 CO2 inversion intercomparison: 1. Annual mean control results and sensitivity to transport and prior flux information , 2003 .

[15]  R. Houghton Revised estimates of the annual net flux of carbon to the atmosphere from changes in land use and land management 1850 – 2000 , 2003 .

[16]  Mingkui Cao,et al.  Increasing terrestrial carbon uptake from the 1980s to the 1990s with changes in climate and atmospheric CO2 , 2002 .

[17]  Damian Barrett,et al.  Steady state turnover time of carbon in the Australian terrestrial biosphere , 2002 .

[18]  Thomas Kaminski,et al.  Assimilating atmospheric data into a terrestrial biosphere model: A case study of the seasonal cycle , 2002 .

[19]  Stephen Sitch,et al.  Evaluation of terrestrial carbon cycle models with atmospheric CO2 measurements: Results from transient simulations considering increasing CO2, climate, and land‐use effects , 2002 .

[20]  S. Page,et al.  The amount of carbon released from peat and forest fires in Indonesia during 1997 , 2002, Nature.

[21]  R. Francey,et al.  Interannual growth rate variations of atmospheric CO2 and its δ13C, H2, CH4, and CO between 1992 and 1999 linked to biomass burning , 2002 .

[22]  J. Randerson,et al.  Carbon isotope discrimination of arctic and boreal biomes inferred from remote atmospheric measurements and a biosphere‐atmosphere model , 2002 .

[23]  Ian G. Enting,et al.  Inverse problems in atmospheric constituent transport , 2002 .

[24]  J. Dufresne,et al.  On the magnitude of positive feedback between future climate change and the carbon cycle , 2002 .

[25]  Taro Takahashi,et al.  Towards robust regional estimates of CO2 sources and sinks using atmospheric transport models , 2002, Nature.

[26]  R. Langenfelds Studies of the global carbon cycle using atmospheric oxygen and associated tracers , 2002 .

[27]  T Kaminski,et al.  Inverse modeling of atmospheric carbon dioxide fluxes. , 2001, Science.

[28]  Peter A. Coppin,et al.  Parameter estimation in surface exchange models using nonlinear inversion: how many parameters can we estimate and which measurements are most useful? , 2001 .

[29]  Bart Nijssen,et al.  Global Retrospective Estimation of Soil Moisture Using the Variable Infiltration Capacity Land Surface Model, 1980–93 , 2001 .

[30]  David S. Schimel,et al.  A diagnostic study of temperature controls on global terrestrial carbon exchange , 2001 .

[31]  Thomas Kaminski,et al.  On aggregation errors in atmospheric transport inversions , 2001 .

[32]  Wolfgang Knorr,et al.  Uncertainties in global terrestrial biosphere modeling: 1. A comprehensive sensitivity analysis with a new photosynthesis and energy balance scheme , 2001 .

[33]  Wolfgang Knorr,et al.  Uncertainties in global terrestrial biosphere modeling, Part II: Global constraints for a process‐based vegetation model , 2001 .

[34]  I. C. Prentice,et al.  Carbon balance of the terrestrial biosphere in the Twentieth Century: Analyses of CO2, climate and land use effects with four process‐based ecosystem models , 2001 .

[35]  P. Cox,et al.  Constraints on the temperature sensitivity of global soil respiration from the observed interannual variability in atmospheric CO2 , 2001 .

[36]  P. Jones,et al.  Ascribing potential causes of recent trends in free atmosphere temperatures , 2001 .

[37]  W. Knorr,et al.  Using Satellite Data Assimilation to Infer Global Soil Moisture Status and Vegetation Feedback to Climate , 2001 .

[38]  H. Storch,et al.  Extending North Atlantic Oscillation reconstructions back to 1500 , 2001 .

[39]  Michel M. Verstraete,et al.  Remote sensing and climate modeling : synergies and limitations , 2001 .

[40]  Robert J. Scholes,et al.  The Carbon Cycle and Atmospheric Carbon Dioxide , 2001 .

[41]  Christian Körner,et al.  Biosphere responses to CO2 enrichment. , 2000 .

[42]  Corinne Le Quéré,et al.  Regional changes in carbon dioxide fluxes of land and oceans since 1980. , 2000, Science.

[43]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[44]  R. Dargaville,et al.  Implications of interannual variability in atmospheric circulation on modeled CO2 concentrations and source estimates , 2000 .

[45]  Wolfgang Knorr,et al.  Annual and interannual CO2 exchanges of the terrestrial biosphere: process-based simulations and uncertainties , 2000 .

[46]  Susan E. Trumbore,et al.  AGE OF SOIL ORGANIC MATTER AND SOIL RESPIRATION: RADIOCARBON CONSTRAINTS ON BELOWGROUND C DYNAMICS , 2000 .

[47]  Andreas Griewank,et al.  Evaluating derivatives - principles and techniques of algorithmic differentiation, Second Edition , 2000, Frontiers in applied mathematics.

[48]  Jorge L. Sarmiento,et al.  On the use of regularization techniques in the inverse modeling of atmospheric carbon dioxide , 1999 .

[49]  Thomas Kaminski,et al.  A coarse grid three-dimensional global inverse model of the atmospheric transport. 2. Inversion of the transport of CO2 in the 1980s , 1999 .

[50]  Thomas Kaminski,et al.  A coarse grid three-dimensional global inverse model of the atmospheric transport 1. Adjoint model and Jacobian matrix , 1999 .

[51]  R. Feely,et al.  Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation , 1999, Nature.

[52]  R. Law CO2 sources from a mass-balance inversion: sensitivity to the surface constraint , 1999 .

[53]  Ian G. Enting,et al.  Reconstructing the recent carbon cycle from atmospheric CO2, δ13C and O2/N2 observations* , 1999 .

[54]  J. Randerson,et al.  Comparing global models of terrestrial net primary productivity (NPP): analysis of the seasonal atmospheric CO2 signal , 1999 .

[55]  Taro Takahashi,et al.  Net sea-air CO2 flux over the global oceans: An improved estimate based on the sea-air pCO2 difference , 1999 .

[56]  EÂ J.-C.G Comparing global models of terrestrial net primary productivity ( NPP ) : analysis of the seasonal atmospheric CO 2 signal , 1999 .

[57]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[58]  R. B. Jackson,et al.  The fate of carbon in grasslands under carbon dioxide enrichment , 1997, Nature.

[59]  Wolfgang Knorr Satellitengestützte Fernerkundung und Modellierung des globalen CO2-Austauschs der Landvegetation , 1997 .

[60]  Inez Y. Fung,et al.  Variations in modeled atmospheric transport of carbon dioxide and the consequences for CO2 inversions , 1996 .

[61]  Gregg Marland,et al.  A 1° × 1° distribution of carbon dioxide emissions from fossil fuel consumption and cement manufacture, 1950–1990 , 1996 .

[62]  Roel Snieder,et al.  Model Estimations Biased by Truncated Expansions: Possible Artifacts in Seismic Tomography , 1996, Science.

[63]  Wolfgang Knorr,et al.  Impact of drought stress and other factors on seasonal land biosphere CO2 exchange studied through an atmospheric tracer transport model , 1995 .

[64]  Dan Tarpley,et al.  The Enhanced NOAA Global Land Dataset from the Advanced Very High Resolution Radiometer , 1995 .

[65]  Martin Heimann,et al.  The global atmospheric tracer model TM3 , 1995 .

[66]  Pieter P. Tans,et al.  Evidence for interannual variability of the carbon cycle from the National Oceanic and Atmospheric Administration/Climate Monitoring and Diagnostics Laboratory Global Air Sampling Network , 1994 .

[67]  G. Collatz,et al.  Coupled Photosynthesis-Stomatal Conductance Model for Leaves of C4 Plants , 1992 .

[68]  I. Fung,et al.  Observational Contrains on the Global Atmospheric Co2 Budget , 1990, Science.

[69]  M. Tiedtke A Comprehensive Mass Flux Scheme for Cumulus Parameterization in Large-Scale Models , 1989 .

[70]  P. Tans,et al.  Atmospheric carbon dioxide at Mauna Loa Observatory: 2. Analysis of the NOAA GMCC data, 1974–1985 , 1989 .

[71]  G D Farquhar Models relating subcellular effects of temperature to whole plant responses. , 1988, Symposia of the Society for Experimental Biology.

[72]  George M. Woodwell,et al.  The flux of carbon from terrestrial ecosystems to the atmosphere in 1980 due to changes in land use: geographic distribution of the global flux , 1987 .

[73]  A. Tarantola Inverse problem theory : methods for data fitting and model parameter estimation , 1987 .

[74]  A. Henderson‐sellers,et al.  A global archive of land cover and soils data for use in general circulation climate models , 1985 .

[75]  J. Louis A parametric model of vertical eddy fluxes in the atmosphere , 1979 .