InGaN: An overview of the growth kinetics, physical properties and emission mechanisms

Abstract This article reviews the fundamental properties of InGaN materials. The growth kinetics associated with the growth parameters, such as growth temperatures, V/III ratios, and growth rates which influence the quality of the InGaN epilayers, are briefly described. An overview of the properties of the InGaN alloys, such as the optical, structural and electrical characteristics, is presented. The design and fabrication of novel optoelectronic device structures require an accurate knowledge of the band gap as a function of alloy composition; therefore, attention is paid to Vegard’s law and the bowing parameter; in addition, the major factors leading to the uncertainties of the bowing parameter of InGaN are addressed. Apart from that, the determination of indium composition by X-ray diffraction (XRD) using different assumptions and various equations are summarized. The erroneous measurements of the indium composition by using this technique are also described. Finally, different emission mechanisms of the strained InGaN quantum wells proposed by different groups of researchers are also discussed.

[1]  B. Gil,et al.  Growth of InN layers by MOVPE using different substrates , 2004 .

[2]  S. Nakamura First laser diodes fabricated from III–V nitride based materials , 1997 .

[3]  Larry A. Coldren,et al.  Measured and calculated radiative lifetime and optical absorption of In x Ga 1 − x N / G a N quantum structures , 2000 .

[4]  Hiroshi Harima,et al.  Optical bandgap energy of wurtzite InN , 2002 .

[5]  R. J. Shul,et al.  GAN : PROCESSING, DEFECTS, AND DEVICES , 1999 .

[6]  H. Riechert,et al.  Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data , 1999 .

[7]  Xianfan Xu,et al.  Band transitions in wurtzite GaN and InN determined by valence electron energy loss spectroscopy , 2005 .

[8]  Yen-Kuang Kuo,et al.  Vegard's law deviation in band gaps and bowing parameters of the wurtzite III-nitride ternary alloys , 2005, SPIE/COS Photonics Asia.

[9]  C. Humphreys,et al.  Determination of the indium content and layer thicknesses in InGaN/GaN quantum wells by x-ray scattering , 2003 .

[10]  Eicke R. Weber,et al.  The effects of indium concentration and well-thickness on the mechanisms of radiative recombination in InxGa1−xN quantum wells , 2000 .

[11]  X. Ding,et al.  Growth and doping characteristics of InGaN films grown by low pressure MOCVD , 1998 .

[12]  Ingrid Moerman,et al.  Study of GaN and InGaN films grown by metalorganic chemical vapour deposition , 1997 .

[13]  F. G. McIntosh,et al.  Growth and characterization of In-based nitride compounds , 1997 .

[14]  P. Paskov,et al.  Optical properties of InN—the bandgap question , 2005 .

[15]  M. Shimizu,et al.  Realization of Ga-polarity GaN films in radio-frequency plasma-assisted molecular beam epitaxy , 2000 .

[16]  M. G. Cheong,et al.  High-quality In0.3Ga0.7N/GaN quantum well growth and their optical and structural properties , 2001 .

[17]  Chuan-Pu Liu,et al.  Tuning the emitting wavelength of InGaN/GaN superlattices from blue, green to yellow by controlling the size of InGaN quasi-quantum dot , 2006 .

[18]  Properties of InGaN deposited on Glass at Low Temperature , 1997 .

[19]  Z. J. Yang,et al.  An approach to determine the chemical composition in InGaN/GaN multiple quantum wells , 2004 .

[20]  Hiroshi Ogawa,et al.  Temperature dependence of Raman scattering in hexagonal indium nitride films , 2000 .

[21]  Wladek Walukiewicz,et al.  Narrow bandgap group III-nitride alloys , 2003 .

[22]  Oliver Ambacher,et al.  Growth and applications of Group III-nitrides , 1998 .

[23]  J. Im,et al.  The role of piezoelectric fields in GaN-based quantum wells , 1998 .

[24]  Pierre Ruterana,et al.  First-principles investigation of lattice constants and bowing parameters in wurtzite AlxGa1−xN, InxGa1−xN and InxAl1−xN alloys , 2003 .

[25]  In-Hwan Lee,et al.  Effect of growth pressure on indium incorporation during the growth of InGaN by MOCVD , 2001 .

[26]  G. Andrew D. Briggs,et al.  The influence of ammonia on the growth mode in InGaN/GaN heteroepitaxy , 2004 .

[27]  K. Butcher,et al.  InN grown by remote plasma-enhanced chemical vapor deposition , 2004 .

[28]  W. Shen,et al.  Observation of visible luminescence from indium nitride at room temperature , 2005 .

[29]  Nicolas Grandjean,et al.  InGaN/GaN quantum wells grown by molecular-beam epitaxy emitting from blue to red at 300 K , 2000 .

[30]  J. W. Matthews,et al.  Defects in epitaxial multilayers: I. Misfit dislocations* , 1974 .

[31]  N. Teraguchi,et al.  Growth Temperature Dependence of Indium Nitride Crystalline Quality Grown by RF‐MBE , 2002 .

[32]  Evaluation of strain and In content in (InGaN/GaN) multiquantum wells by x-ray analysis , 1999 .

[33]  J. Massies,et al.  Molecular beam epitaxy growth of nitride materials , 1999 .

[34]  Christian Kisielowski,et al.  Local indium segregation and bang gap variations in high efficiency green light emitting InGaN/GaN diodes , 2006 .

[35]  E. Alves,et al.  Indium content determination related with structural and optical properties of InGaN layers , 2001 .

[36]  Sergio E. Ulloa,et al.  ACCEPTOR BINDING ENERGIES IN GAN AND ALN , 1998 .

[37]  J. Massies,et al.  Group-III nitride quantum heterostructures grown by molecular beam epitaxy , 2001 .

[38]  T. Tansley,et al.  Energy band gap and optical properties of non-stoichiometric InN—theory and experiment , 2006 .

[39]  Gerald B. Stringfellow,et al.  Solid phase immiscibility in GaInN , 1996 .

[40]  S. Shrestha,et al.  Apparent band-gap shift in InN films grown by remote-plasma-enhanced CVD , 2006 .

[41]  M. Pessa,et al.  Emission studies of InGaN layers and LEDs grown by plasma-assisted MBE , 2001 .

[42]  L. Coldren,et al.  Optical properties of InGaN quantum wells , 1999 .

[43]  Matthew D. McCluskey,et al.  LARGE BAND GAP BOWING OF INXGA1-XN ALLOYS , 1998 .

[44]  S. Shrestha,et al.  Nitrogen-rich indium nitride , 2004 .

[45]  R. Martin,et al.  Light emission ranging from blue to red from a series of InGaN/GaN single quantum wells , 2002 .

[46]  C. K. Wang,et al.  InGaN quantum dot photodetectors , 2003 .

[47]  Tao Yang,et al.  Increased Size of Open Hexagonally Shaped Pits due to Growth Interruption and Its Influence on InGaN/GaN Quantum-Well Structures Grown by Metalorganic Vapor Phase Epitaxy , 1998 .

[48]  S. Denbaars,et al.  Spiral Growth of InGaN Nanoscale Islands on GaN , 1998 .

[49]  I. Batyrev,et al.  Breakdown of the band-gap-common-cation rule: The origin of the small band gap of InN , 2003 .

[50]  J. Massies,et al.  GaInN GaN multiple-quantum-well light-emitting diodes grown by molecular beam epitaxy , 1999 .

[51]  S. Denbaars,et al.  Gallium-nitride-based materials for blue to ultraviolet optoelectronics devices , 1997, Proc. IEEE.

[52]  J. Wagner,et al.  Spectroscopic ellipsometry characterization of (InGa)N on GaN , 1998 .

[53]  M. Boćkowski,et al.  Epitaxy of ternary nitrides on GaN single crystals , 1999 .

[54]  F. G. McIntosh,et al.  Growth and Properties of InGaN and AlInGaN Thin Films on (0001) Sapphire , 1996 .

[55]  Bo Monemar,et al.  Luminescence in III-nitrides , 1999 .

[56]  M. Shimizu,et al.  Essential Change in Crystal Qualities of GaN Films by Controlling Lattice Polarity in Molecular Beam Epitaxy , 2000 .

[57]  Y. Arakawa,et al.  Atomic structure and phase stability of In x Ga 1 − x N random alloys calculated using a valence-force-field method , 1999 .

[58]  Takashi Matsuoka,et al.  Photoluminescence of InGaN films grown at high temperature by metalorganic vapor phase epitaxy , 1991 .

[59]  Yuichi Sato,et al.  Low-temperature growth of GaN and InxGa1−xN films on glass substrates , 1998 .

[60]  R. Dimitrov,et al.  Playing with Polarity , 2001 .

[61]  Umesh K. Mishra,et al.  Effect of the growth rate and the barrier doping on the morphology and the properties of InGaN/GaN quantum wells , 1998 .

[62]  S. Nakamura III-V nitride-based light-emitting diodes , 1996 .

[63]  H. Morkoç,et al.  Luminescence properties of defects in GaN , 2005 .

[64]  Nicolas Grandjean,et al.  Monolithic White Light Emitting Diodes Based on InGaN/GaN Multiple-Quantum Wells : Semiconductors , 2001 .

[65]  In-Hwan Lee,et al.  Characterization of optical and crystal qualities in InxGa1–xN/InyGa1–yN multi-quantum wells grown by MOCVD , 2003 .

[66]  Paul F. Fewster,et al.  X Ray Scattering From Semiconductors , 2000 .

[67]  S. Nakamura,et al.  Current and Temperature Dependences of Electroluminescence of InGaN-Based UV/Blue/Green Light-Emitting Diodes , 1998 .

[68]  Masaaki Onomura,et al.  Doping characteristics and electrical properties of Mg-doped AlGaN grown by atmospheric-pressure MOCVD , 1998 .

[69]  K. Kishino,et al.  High speed growth of device quality GaN and InGaN by RF-MBE , 1999 .

[70]  Takashi Mukai,et al.  In inhomogeneity and emission characteristics of InGaN , 2001 .

[71]  S. Nakamura,et al.  High-Brightness InGaN Blue, Green and Yellow Light-Emitting Diodes with Quantum Well Structures , 1995 .

[72]  Ian Watson,et al.  Strain and composition distributions in wurtzite InGaN/GaN layers extracted from x-ray reciprocal space mapping , 2002 .

[73]  Yoshiki Saito,et al.  RF-Molecular Beam Epitaxy Growth and Properties of InN and Related Alloys , 2003 .

[74]  K. Kumakura,et al.  Activation Energy and Electrical Activity of Mg in Mg-Doped InxGa1-xN (x<0.2) , 2000 .

[75]  Petr G. Eliseev,et al.  BLUE TEMPERATURE-INDUCED SHIFT AND BAND-TAIL EMISSION IN INGAN-BASED LIGHT SOURCES , 1997 .

[76]  Stephen J. Pearton,et al.  GaN and related materials II , 2000 .

[77]  David Vanderbilt,et al.  Spontaneous polarization and piezoelectric constants of III-V nitrides , 1997 .

[78]  J. Im,et al.  GaInN/GaN-Heterostructures and Quantum Wells Grown by Metalorganic Vapor-Phase Epitaxy , 1997 .

[79]  Cathy P. Foley,et al.  Optical band gap of indium nitride , 1986 .

[80]  Y. Hijikata,et al.  RF-MBE growth of a-plane InN on r-plane sapphire with a GaN underlayer , 2007 .

[81]  J. Im,et al.  Reduction of oscillator strength due to piezoelectric fields in G a N / A l x Ga 1 − x N quantum wells , 1998 .

[82]  J. Massies,et al.  Carrier dynamics in group-III nitride low-dimensional systems: Localization versus quantum-confined Stark effect , 2001 .

[83]  Larry A. Coldren,et al.  Growth and characterization of bulk InGaN films and quantum wells , 1996 .

[84]  Shuji Nakamura,et al.  Luminescences from localized states in InGaN epilayers , 1997 .

[85]  S. Chang,et al.  Growth of nanoscale InGaN self-assembled quantum dots , 2003 .

[86]  Umesh K. Mishra,et al.  Growth of bulk InGaN films and quantum wells by atmospheric pressure metalorganic chemical vapour deposition , 1997 .

[87]  S. Nakamura,et al.  BRILLOUIN SCATTERING STUDY OF BULK GAN , 1999 .

[88]  M. G. Cheong,et al.  Properties of InGaN/GaN quantum wells and blue light emitting diodes , 2002 .

[89]  Growth and characterizations of InGaN on N- and Ga-polarity GaN grown by plasma-assisted molecular-beam epitaxy , 2002 .

[90]  V. Woods,et al.  InN growth by high-pressures chemical vapor deposition: Real-time optical growth characterization , 2006 .

[91]  V. Deibuk,et al.  The role of alloying effects in the formation of electronic structure of unordered Group III nitride solid solutions , 2004 .

[92]  Pierre Lefebvre,et al.  Quantum confined Stark effect due to built-in internal polarization fields in (Al,Ga)N/GaN quantum wells. , 1998 .

[93]  Jaime A. Freitas,et al.  Gallium nitride materials - progress, status, and potential roadblocks , 2002, Proc. IEEE.

[94]  S. Nakamura,et al.  Spontaneous emission of localized excitons in InGaN single and multiquantum well structures , 1996 .

[95]  Robert W. Martin,et al.  Origin of Luminescence from InGaN Diodes , 1999 .

[96]  T. Y. Wang,et al.  Interface control mechanisms in horizontal zone-melting with slow rotation , 2000 .

[97]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[98]  S. Mahajan,et al.  Compositional dependence of phase separation in InGaN layers , 2004 .

[99]  A. Zettl,et al.  Nucleation and growth of InN thin films using conventional and pulsed MOVPE , 2004 .

[100]  T. Matsuoka,et al.  Wide-gap semiconductor InGaN and InGaAln grown by MOVPE , 1992 .

[101]  S. Chang,et al.  High hole concentration of p-type InGaN epitaxial layers grown by MOCVD , 2006 .

[102]  Y. T. Rebane,et al.  Influence of Poisson's ratio uncertainty on calculations of the bowing parameter for strained InGaN layers , 2001 .

[103]  A. Koukitu,et al.  Thermodynamic analysis of the MOVPE growth of InxGa1-xN , 1997 .

[104]  Sérgio Pereira,et al.  Structural analysis of InGaN epilayers , 2001 .

[105]  Shuji Nakamura,et al.  Recombination dynamics of localized excitons in In 0.20 Ga 0.80 N- In 0.05 Ga 0.95 N multiple quantum wells , 1997 .

[106]  Eric Sven Hellman,et al.  The Polarity of GaN: a Critical Review , 1998 .

[107]  P. Ryder,et al.  INCORPORATION OF INDIUM DURING MOLECULAR BEAM EPITAXY OF INGAN , 1998 .

[108]  M. Kauer,et al.  InGaN laser diodes and high brightness light emitting diodes grown by molecular beam epitaxy , 2005 .

[109]  Jichai Jeong,et al.  The Effects of In Flow during Growth Interruption on the Optical Properties of InGaN Multiple Quantum Wells Grown by Low Pressure Metalorganic Chemical Vapor Deposition , 2001 .

[110]  Keunseop Park,et al.  Effects of barrier growth temperature on the properties of InGaN/GaN multi-quantum wells , 2003 .

[111]  Fischer,et al.  New approach in equilibrium theory for strained layer relaxation. , 1994, Physical review letters.

[112]  K. Cheah,et al.  Energy bands and acceptor binding energies of GaN , 1999 .

[113]  Isamu Akasaki,et al.  Crystal Growth and Conductivity Control of Group III Nitride Semiconductors and Their Application to Short Wavelength Light Emitters , 1997 .

[114]  D. Noh,et al.  Structural characterization of InGaN thin films and multiple quantum wells: an approach of combining various X-ray scattering methods , 2003 .

[115]  Tai-Yuan Lin,et al.  Direct evidence of nanocluster-induced luminescence in InGaN epifilms , 2005 .

[116]  Ingrid Moerman,et al.  MOVPE growth optimization of high quality InGaN films. , 1997 .

[117]  Takeshi Kuboyama,et al.  Properties of Ga1-xInxN Films Prepared by MOVPE , 1989 .

[118]  M. Shimizu,et al.  Growth and Characterization of InGaN/GaN Multiple Quantum Wells on Ga-Polarity GaN by Plasma-Assisted Molecular Beam Epitaxy , 2001 .

[119]  Zhang Guoyi,et al.  Growth and Optical Properties of Double Heterostructure GaN/InGaN/GaN Films with Large Composition , 2002 .

[120]  Stephen J. Pearton,et al.  Fabrication and performance of GaN electronic devices , 2000 .

[121]  Isamu Akasaki,et al.  Optical Properties of Strained AlGaN and GaInN on GaN , 1997 .

[122]  O. Brandt,et al.  Indium Surface Segregation during Growth of (In,Ga)N/GaN Multiple Quantum Wells by Plasma‐Assisted Molecular Beam Epitaxy , 2001 .

[123]  Cheul‐Ro Lee,et al.  Characteristics of InxGa1 − xN/GaN grown by LPMOVPE with the variation of growth temperature , 1997 .

[124]  R. Martin,et al.  Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .

[125]  Akio Yamamoto,et al.  Indium nitride (InN): A review on growth, characterization, and properties , 2003 .

[126]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[127]  T. Matsuoka Progress in nitride semiconductors from GaN to InN—MOVPE growth and characteristics , 2005 .

[128]  John C. Roberts,et al.  Optical band gap dependence on composition and thickness of InxGa1−xN (0 , 1999 .

[129]  Hadis Morkoç,et al.  Progress and prospects of group-III nitride semiconductors , 1996 .

[130]  Shuji Nakamura,et al.  Growth of InxGa(1−x)N compound semiconductors and high-power InGaN/AlGaN double heterostructure violet-light-emitting diodes , 1994 .

[131]  T. Mishima,et al.  Photoluminescence characteristics and pit formation of InGaN/GaN quantum-well structures grown on sapphire substrates by low-pressure metalorganic vapor phase epitaxy , 1999 .

[132]  Z. Feng,et al.  Optical transitions in InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1996 .

[133]  H. Morkoç,et al.  Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies , 1994 .

[134]  Hiroshi Harima,et al.  Absorption and Emission of Hexagonal InN. Evidence of Narrow Fundamental Band Gap. , 2002 .

[135]  W. Schaff,et al.  Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels , 2004 .

[136]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[137]  Isamu Akasaki,et al.  Optical band gap in Ga1−xInxN (0 , 1998 .

[138]  Isamu Akasaki,et al.  P-TYPE CONDUCTION IN MG-DOPED GAN AND AL0.08GA0.92N GROWN BY METALORGANIC VAPOR PHASE EPITAXY , 1994 .

[139]  Teresa Monteiro,et al.  Compositional dependence of the strain-free optical band gap in InxGa1−xN layers , 2001 .

[140]  H. Amano,et al.  Radiative recombination in In0.15Ga0.85N/GaN multiple quantum well structures , 1999 .

[141]  Achim Trampert,et al.  Structural and optical characterization of thick InGaN layers and InGaN/GaN MQW grown by molecular beam epitaxy , 2002 .

[142]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[143]  Wei-Kuo Chen,et al.  Growth temperature effects on InxGa1−xN films studied by X-ray and photoluminescence , 1998 .

[144]  Matthias Kauer,et al.  InGaN laser diodes by molecular beam epitaxy , 2005, SPIE OPTO.

[145]  Eicke R. Weber,et al.  INGAN/GAN QUANTUM WELLS STUDIED BY HIGH PRESSURE, VARIABLE TEMPERATURE, AND EXCITATION POWER SPECTROSCOPY , 1998 .

[146]  Yen-Kuang Kuo,et al.  Band-Gap Bowing Parameter of the AlxGa1-xN Derived from Theoretical Simulation , 2002 .

[147]  T. Seong,et al.  Structural and optical properties of InGaN/GaN multiple quantum wells : The effect of the number of InGaN/GaN pairs , 2000 .

[148]  Masahito Kurouchi,et al.  Growth and properties of In‐rich InGaN films grown on (0001) sapphire by RF‐MBE , 2004 .

[149]  M. J. Godfrey,et al.  Temperature dependent optical properties of InGaN/GaN quantum well structures , 2001 .

[150]  H. Makino,et al.  Optical properties of InN films grown by molecular beam epitaxy at different conditions , 2006 .

[151]  Wladek Walukiewicz,et al.  Optical properties and electronic structure of InN and In-rich group III-nitride alloys , 2004 .

[152]  L. Romano,et al.  Large and composition-dependent band gap bowing in InxGa1-xN alloys , 1999 .

[153]  J. B. Lam,et al.  MOCVD growth, stimulated emission and time-resolved PL studies of InGaN/(In)GaN MQWs: well and barrier thickness dependence , 2000 .

[154]  Shuji Nakamura,et al.  Atomic Scale Indium Distribution in a GaN/In0.43Ga0.57N/Al0.1Ga0.9N Quantum Well Structure , 1997 .

[155]  F. Ponce,et al.  A comparison of Rutherford backscattering spectroscopy and X-ray diffraction to determine the composition of thick InGaN epilayers , 2001 .

[156]  Gye Mo Yang,et al.  Structural and optical investigation of InGaN/GaN multiple quantum well structures with various indium compositions , 2001 .