The blow-up dynamic and upper bound on the blow-up rate for critical nonlinear Schrödinger equation

We consider the critical nonlinear Schr?odinger equation iut = -.u-|u| 4 N u with initial condition u(0, x) = u0 in dimension N = 1. For u0 . H1, local existence in the time of solutions on an interval [0, T) is known, and there exist finite time blow-up solutions, that is, u0 such that limt.T 1.

[1]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[2]  Yoshimi Saito,et al.  Eigenfunction Expansions Associated with Second-order Differential Equations for Hilbert Space-valued Functions , 1971 .

[3]  Frank Merle,et al.  Blow up in finite time and dynamics of blow up solutions for the L^2-critical generalized KdV equation , 2002 .

[4]  M. Weinstein Lyapunov stability of ground states of nonlinear dispersive evolution equations , 1986 .

[5]  C. Sulem,et al.  The nonlinear Schrödinger equation : self-focusing and wave collapse , 2004 .

[6]  Michael I. Weinstein,et al.  Modulational Stability of Ground States of Nonlinear Schrödinger Equations , 1985 .

[7]  E. C. Titchmarsh,et al.  Reviews , 1947, The Mathematical Gazette.

[8]  F. Merle,et al.  Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power , 1993 .

[9]  G. Perelman On the blow up phenomenon for the critical nonlinear Schrödinger equation in 1D , 2000 .

[10]  Tosio Kato,et al.  On nonlinear Schrödinger equations , 1987 .

[11]  W. Zachary,et al.  Nonlinear Semigroups, Partial Differential Equations and Attractors , 1987 .

[12]  T. Cazenave,et al.  Some remarks on the nonlinear Schrödinger equation in the subcritical case , 1989 .

[13]  A. Soffer,et al.  Resonances, radiation damping and instabilitym in Hamiltonian nonlinear wave equations , 1998, chao-dyn/9807003.

[14]  B. Gidas,et al.  Symmetry and related properties via the maximum principle , 1979 .

[15]  Jean Bourgain,et al.  Construction of blowup solutions for the nonlinear Schr ? odinger equation with critical nonlineari , 1997 .

[16]  Frank Merle,et al.  Stability of blow-up profile and lower bounds for blow-up rate for the critical generalized KdV equation , 2002 .

[17]  George Papanicolaou,et al.  Singular solutions of the Zakharov equations for Langmuir turbulence , 1991 .

[18]  Frank Merle,et al.  Blow-up phenomena for critical nonlinear Schrödinger and Zakharov equations. , 1998 .

[19]  M. Kwong Uniqueness of positive solutions of Δu−u+up=0 in Rn , 1989 .

[20]  Gadi Fibich,et al.  A modulation method for self-focusing in the perturbed critical nonlinear Schrödinger equation , 1998 .

[21]  Frank Merle,et al.  Sharp upper bound on the blow-up rate for the critical nonlinear Schrödinger equation , 2003 .

[22]  F. Merle,et al.  Existence of self-similar blow-up solutions for Zakhrov equation in dimension two. Part I , 1994 .

[23]  W. Rother,et al.  Nonlinear scalar field equations , 1992, Differential and Integral Equations.

[24]  Frank Merle,et al.  A Liouville theorem for the critical generalized Korteweg–de Vries equation , 2000 .

[25]  J. Ginibre,et al.  On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case , 1979 .

[26]  Takayoshi Ogawa,et al.  Blow-up of H1 solution for the nonlinear Schrödinger equation , 1991 .

[27]  Frank Merle,et al.  Instability of solitons for the critical generalized Korteweg—de Vries equation , 2001 .

[28]  Papanicolaou,et al.  Rate of blowup for solutions of the nonlinear Schrödinger equation at critical dimension. , 1988, Physical review. A, General physics.

[29]  Pierre-Louis Lions,et al.  Nonlinear scalar field equations, I existence of a ground state , 1983 .

[30]  J. Bourgain Harmonic Analysis and Nonlinear Partial Differential Equations , 1995 .

[31]  Frank Merle,et al.  Existence of blow-up solutions in the energy space for the critical generalized KdV equation , 2001 .

[32]  Hayato Nawa,et al.  ASYMPTOTIC AND LIMITING PROFILES OF BLOWUP SOLUTIONS OF THE NONLINEAR SCHRODINGER EQUATION WITH CRITICAL POWER , 1999 .

[33]  V. Zakharov,et al.  Exact Theory of Two-dimensional Self-focusing and One-dimensional Self-modulation of Waves in Nonlinear Media , 1970 .

[34]  M. Weinstein Nonlinear Schrödinger equations and sharp interpolation estimates , 1983 .

[35]  Catherine Sulem,et al.  The nonlinear Schrödinger equation , 2012 .

[36]  Jean Bourgain,et al.  Global Solutions of Nonlinear Schrodinger Equations , 1999 .

[37]  G. Weiss,et al.  EIGENFUNCTION EXPANSIONS. Associated with Second-order Differential Equations. Part I. , 1962 .