Antibacterial efficiency of alkali-free bio-glasses incorporating ZnO and/or SrO as therapeutic agents

[1]  J. Ferreira,et al.  Enhanced bioactivity of a rapidly-dried sol-gel derived quaternary bioglass. , 2018, Materials science & engineering. C, Materials for biological applications.

[2]  A. Moghanian,et al.  The effect of magnesium content on in vitro bioactivity, biological behavior and antibacterial activity of sol–gel derived 58S bioactive glass , 2018, Ceramics International.

[3]  Jing Ma,et al.  Novel micro/nanostructured TiO2/ZnO coating with antibacterial capacity and cytocompatibility , 2018, Ceramics International.

[4]  A. Abdelghany,et al.  Compatibility and bone bonding efficiency of gamma irradiated Hench's Bioglass-Ceramics , 2018 .

[5]  E. Levashov,et al.  Comparative investigation of antibacterial yet biocompatible Ag-doped multicomponent coatings obtained by pulsed electrospark deposition and its combination with ion implantation , 2018 .

[6]  J. Ferreira,et al.  Biocompatibility and antimicrobial activity of biphasic calcium phosphate powders doped with metal ions for regenerative medicine , 2017 .

[7]  J. Segal,et al.  Mechanical, structural and dissolution properties of heat treated thin-film phosphate based glasses , 2017 .

[8]  J. Ferreira,et al.  The key Features expected from a Perfect Bioactive Glass – How Far we still are from an Ideal Composition? , 2017 .

[9]  Yu-Chien Lin,et al.  Novel graphene oxide-containing antibacterial mesoporous bioactive glass , 2017 .

[10]  G. García-Rivas,et al.  Synergistic Antimicrobial Effects of Silver/Transition-metal Combinatorial Treatments , 2017, Scientific Reports.

[11]  I. Mercioniu,et al.  Bioglass implant-coating interactions in synthetic physiological fluids with varying degrees of biomimicry , 2017, International journal of nanomedicine.

[12]  D. Grant,et al.  Insights into structural characterisation and thermal properties of compositionally equivalent vapour-condensed and melt-quenched glasses , 2016 .

[13]  G. Stan,et al.  Submicrometer Hollow Bioglass Cones Deposited by Radio Frequency Magnetron Sputtering: Formation Mechanism, Properties, and Prospective Biomedical Applications. , 2016, ACS applied materials & interfaces.

[14]  Richard A. Martin,et al.  The influence of pH and fluid dynamics on the antibacterial efficacy of 45S5 Bioglass , 2016, Biomedical materials.

[15]  J. Segal,et al.  Degradation and Characterization of Resorbable Phosphate-Based Glass Thin-Film Coatings Applied by Radio-Frequency Magnetron Sputtering. , 2015, ACS applied materials & interfaces.

[16]  J. Segal,et al.  Preferential sputtering in phosphate glass systems for the processing of bioactive coatings , 2015 .

[17]  P. Cui,et al.  Pathogenesis of infection in surgical patients , 2015, Current opinion in critical care.

[18]  R. Słotwiński,et al.  The immune response to surgery and infection , 2014, Central-European journal of immunology.

[19]  K. Adibkia,et al.  Antimicrobial activity of the metals and metal oxide nanoparticles. , 2014, Materials science & engineering. C, Materials for biological applications.

[20]  Y. Chevalier,et al.  The contribution of zinc ions to the antimicrobial activity of zinc oxide , 2014 .

[21]  M. Vallet‐Regí,et al.  In vitro antibacterial capacity and cytocompatibility of SiO2-CaO-P2O5 meso-macroporous glass scaffolds enriched with ZnO. , 2014, Journal of materials chemistry. B.

[22]  Antonio Tilocca,et al.  Role of glass structure in defining the chemical dissolution behavior, bioactivity and antioxidant properties of zinc and strontium co-doped alkali-free phosphosilicate glasses. , 2014, Acta biomaterialia.

[23]  A. Man,et al.  The in vitro antibacterial effect of S53P4 bioactive glass and gentamicin impregnated polymethylmethacrylate beads. , 2014, Acta microbiologica et immunologica Hungarica.

[24]  G. Stan,et al.  Nanomechanical characterization of bioglass films synthesized by magnetron sputtering , 2014 .

[25]  M. Nogler,et al.  Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro , 2014, Journal of orthopaedic research : official publication of the Orthopaedic Research Society.

[26]  Julian R. Jones POROUS BIOACTIVE CERAMIC AND GLASS SCAFFOLDS FOR BONE REGENERATION , 2013 .

[27]  José M.F. Ferreira,et al.  Structural role of zinc in biodegradation of alkali-free bioactive glasses. , 2013, Journal of materials chemistry. B.

[28]  Joe J. Harrison,et al.  Antimicrobial activity of metals: mechanisms, molecular targets and applications , 2013, Nature Reviews Microbiology.

[29]  R. Landers,et al.  Structural Investigation of the Surface of Bioglass 45S5 Enriched with Calcium Ions , 2013 .

[30]  José M.F. Ferreira,et al.  A simple recipe for direct writing complex 45S5 Bioglass® 3D scaffolds , 2013 .

[31]  D. Brauer,et al.  Bactericidal strontium-releasing injectable bone cements based on bioactive glasses , 2013, Journal of The Royal Society Interface.

[32]  G. Stan,et al.  The bioactivity mechanism of magnetron sputtered bioglass thin films , 2012 .

[33]  H. Schellhorn,et al.  Regulators of oxidative stress response genes in Escherichia coli and their functional conservation in bacteria. , 2012, Archives of biochemistry and biophysics.

[34]  T. Kumar,et al.  Strontium‐Substituted Calcium Deficient Hydroxyapatite Nanoparticles: Synthesis, Characterization, and Antibacterial Properties , 2012 .

[35]  M. Hupa,et al.  Phase composition and in vitro bioactivity of porous implants made of bioactive glass S53P4. , 2012, Acta biomaterialia.

[36]  J. Maillard,et al.  Use of hydrogen peroxide as a biocide: new consideration of its mechanisms of biocidal action. , 2012, The Journal of antimicrobial chemotherapy.

[37]  Julian R. Jones,et al.  Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation , 2012, Journal of The Royal Society Interface.

[38]  T. Kasuga,et al.  Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5 , 2012 .

[39]  A. Sola,et al.  Coefficient of thermal expansion of bioactive glasses: available literature data and analytical equation estimates , 2011 .

[40]  Raghu Raman Rajagopal,et al.  Influence of strontium on structure, sintering and biodegradation behaviour of CaO-MgO-SrO-SiO(2)-P(2)O(5)-CaF(2) glasses. , 2011, Acta biomaterialia.

[41]  Eduardo Saiz,et al.  Bioactive glass scaffolds for bone tissue engineering: state of the art and future perspectives. , 2011, Materials science & engineering. C, Materials for biological applications.

[42]  A. Sola,et al.  In situ Raman spectroscopy investigation of bioactive glass reactivity: Simulated body fluid solution vs TRIS-buffered solution , 2011 .

[43]  Peter L. Irwin,et al.  Antibacterial Activity and Mechanism of Action of Zinc Oxide Nanoparticles against Campylobacter jejuni , 2011, Applied and Environmental Microbiology.

[44]  Robert V. Law,et al.  Strontium containing bioactive glasses: Glass structure and physical properties , 2010 .

[45]  A. Fluegel Thermal Expansion Calculation of Silicate Glasses at 210°C, Based on the Systematic Analysis of Global Databases , 2010 .

[46]  G. Stan,et al.  Bioactive glass thin films deposited by magnetron sputtering technique: The role of working pressure , 2010 .

[47]  M. Menziani,et al.  New Insights into the Atomic Structure of 45S5 Bioglass by Means of Solid-State NMR Spectroscopy and Accurate First-Principles Simulations , 2010 .

[48]  D. Boyd,et al.  The effect of ionic dissolution products of Ca–Sr–Na–Zn–Si bioactive glass on in vitro cytocompatibility , 2010, Journal of materials science. Materials in medicine.

[49]  Larry L Hench,et al.  Twenty-first century challenges for biomaterials , 2010, Journal of The Royal Society Interface.

[50]  K. Buttenschoen,et al.  Effect of major abdominal surgery on the host immune response to infection , 2010, Current opinion in infectious diseases.

[51]  Gavin Jell,et al.  The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. , 2010, Biomaterials.

[52]  R. Hill,et al.  Influence of magnesia on the structure and properties of bioactive glasses , 2010 .

[53]  S. Zaremba,et al.  Transcriptomic Response of Escherichia coli O157:H7 to Oxidative Stress , 2009, Applied and Environmental Microbiology.

[54]  S. Moane,et al.  The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts , 2009, Journal of materials science. Materials in medicine.

[55]  Jian Liu,et al.  Characteristics of bioactive glass coatings obtained by pulsed laser deposition , 2008 .

[56]  A. Tilocca Short- and medium-range structure of multicomponent bioactive glasses and melts: An assessment of the performances of shell-model and rigid-ion potentials. , 2008, The Journal of chemical physics.

[57]  W. Stark,et al.  Do bioactive glasses convey a disinfecting mechanism beyond a mere increase in pH? , 2008, International endodontic journal.

[58]  Janet M. Thornton,et al.  Metal ions in biological catalysis: from enzyme databases to general principles , 2008, JBIC Journal of Biological Inorganic Chemistry.

[59]  R. Brow,et al.  Bioactive borate glass coatings for titanium alloys , 2008, Journal of materials science. Materials in medicine.

[60]  T. Peltola,et al.  Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro , 2008, Journal of materials science. Materials in medicine.

[61]  M. Ergun,et al.  Effect of Strontium Ranelate on Hydrogen Peroxide-Induced Apoptosis of CRL-11372 Cells , 2008, Biochemical Genetics.

[62]  H. Ceri,et al.  Multimetal resistance and tolerance in microbial biofilms , 2007, Nature Reviews Microbiology.

[63]  H. Ceri,et al.  Pseudomonas fluorescens' view of the periodic table. , 2007, Environmental microbiology.

[64]  Sung Hwan Kim,et al.  Synthesis of Bio-Glass Ceramics in Na2O-CaO-SiO2-P2O5 System with Fluoride Additives , 2007 .

[65]  H. Luder,et al.  A comparative study on the disinfection potentials of bioactive glass S53P4 and calcium hydroxide in contra-lateral human premolars ex vivo. , 2006, International endodontic journal.

[66]  Larry L. Hench,et al.  The story of Bioglass® , 2006, Journal of materials science. Materials in medicine.

[67]  H. Schaff,et al.  Time-related risk of the St. Jude Silzone heart valve. , 2006, European journal of cardio-thoracic surgery : official journal of the European Association for Cardio-thoracic Surgery.

[68]  Matthias Zehnder,et al.  Dentin enhances the effectiveness of bioactive glass S53P4 against a strain of Enterococcus faecalis. , 2006, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.

[69]  J. Ferreira,et al.  Formation of hydroxyapatite onto glasses of the CaO-MgO-SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. , 2006, Biomaterials.

[70]  A. Alanis,et al.  Resistance to antibiotics: are we in the post-antibiotic era? , 2005, Archives of medical research.

[71]  Chung-Cherng Lin,et al.  Na2CaSi2O6–P2O5 based bioactive glasses. Part 1: Elasticity and structure , 2005 .

[72]  N. Ariel,et al.  The solute‐binding component of a putative Mn(II) ABC transporter (MntA) is a novel Bacillus anthracis virulence determinant , 2005, Molecular microbiology.

[73]  Ralph G. Pearson,et al.  Chemical hardness and density functional theory , 2005 .

[74]  R. Hartmann,et al.  Studies on Escherichia coli RNase P RNA with Zn2+ as the catalytic cofactor , 2005, Nucleic acids research.

[75]  A. Boccaccini,et al.  Structural analysis of bioactive glasses , 2005 .

[76]  Milenko Markovic,et al.  Preparation and Comprehensive Characterization of a Calcium Hydroxyapatite Reference Material , 2004, Journal of research of the National Institute of Standards and Technology.

[77]  D. Nies,et al.  Efflux-mediated heavy metal resistance in prokaryotes. , 2003, FEMS microbiology reviews.

[78]  L. Björck,et al.  MtsABC Is Important for Manganese and Iron Transport, Oxidative Stress Resistance, and Virulence of Streptococcus pyogenes , 2003, Infection and Immunity.

[79]  S. Foster,et al.  MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake , 2002, Molecular microbiology.

[80]  D. Grainger,et al.  Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. , 2002, Journal of biomedical materials research.

[81]  M. Aegerter,et al.  Raman and infrared investigations of glass and glass-ceramics with composition 2Na_2O · 1CaO · 3SiO_2 , 1994 .

[82]  S. Farr,et al.  Oxidative stress responses in Escherichia coli and Salmonella typhimurium , 1991 .

[83]  Larry L. Hench,et al.  Bioceramics: From Concept to Clinic , 1991 .

[84]  A. Bauer,et al.  Antibiotic susceptibility testing by a standardized single disk method. , 1966, American journal of clinical pathology.

[85]  Ralph G. Pearson,et al.  HARD AND SOFT ACIDS AND BASES , 1963 .

[86]  P. Hidnert Thermal expansion of titanium , 1943 .

[87]  F. P. Hall THE INFLUENCE OF CHEMICAL COMPOSITION ON THE PHYSICAL PROPERTIES OF GLAZES , 1930 .

[88]  W. Turner,et al.  RELATIONSHIP BETWEEN CHEMICAL COMPOSITION AND THE THERMAL EXPANSION OF GLASSES1 , 1927 .

[89]  A. Afonso,et al.  The in vivo performance of an alkali-free bioactive glass for bone grafting, FastOs® BG, assessed with an ovine model. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[90]  Julian R Jones,et al.  Review of bioactive glass: from Hench to hybrids. , 2013, Acta biomaterialia.

[91]  A. Boccaccini,et al.  Bioactive glass-based scaffolds for bone tissue engineering. , 2012, Advances in biochemical engineering/biotechnology.

[92]  José M.F. Ferreira,et al.  Alkali-free bioactive glasses for bone tissue engineering: a preliminary investigation. , 2012, Acta biomaterialia.

[93]  G. Stan,et al.  BIOREACTIVITY EVALUATION IN SIMULATED BODY FLUID OF MAGNETRON SPUTTERED GLASS AND GLASS-CERAMIC COATINGS: A FTIR SPECTROSCOPY STUDY , 2010 .

[94]  K. Waldron,et al.  How do bacterial cells ensure that metalloproteins get the correct metal? , 2009, Nature Reviews Microbiology.

[95]  Rocky S. Tuan,et al.  What are the local and systemic biologic reactions and mediators to wear debris, and what host factors determine or modulate the biologic response to wear particles? , 2008, The Journal of the American Academy of Orthopaedic Surgeons.

[96]  N. Woodford,et al.  The emergence of antibiotic resistance by mutation. , 2007, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[97]  A. Lansdown Silver in health care: antimicrobial effects and safety in use. , 2006, Current problems in dermatology.

[98]  M. D. de Broe,et al.  Measurement of strontium in serum, urine, bone, and soft tissues by Zeeman atomic absorption spectrometry. , 1997, Clinical chemistry.

[99]  R. J. P. Williams,et al.  637. The stability of transition-metal complexes , 1953 .

[100]  A. Winkelmann,et al.  Ueber thermische Widerstandscoefficienten verschiedener Gläser in ihrer Abhängigkeit von der chemischen Zusammensetzung , 1894 .