QUINTIC B-SPLINE COLLOCATION METHOD FOR NUMERICAL SOLUTION OF THE EXTENDED FISHER-KOLMOGOROV EQUATION

In this paper, numerical solutions of the extended Fisher-Kolmogorov equation are obtained by using the quintic B-spline collocation scheme. The scheme is based on the Crank–Nicolson formulation for time integration and quintic B-spline functions for space integration. The accuracy of the proposed method is demonstrated by three test problems. The scheme has second order convergence.

[1]  S. Zaki A quintic B-spline finite elements scheme for the KdVB equation , 2000 .

[2]  Wim van Saarloos Dynamical velocity selection: Marginal stability. , 1987 .

[3]  L. Collatz,et al.  Methods for Solution of Partial Differential Equations , 1973 .

[4]  P. M. Prenter Splines and variational methods , 1975 .

[5]  R. Benguria,et al.  On the transition from pulled to pushed monotonic fronts of the extended Fisher–Kolmogorov equation , 2005 .

[6]  P. Coullet,et al.  Nature of spatial chaos. , 1987, Physical review letters.

[7]  W. van Saarloos,et al.  Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection. , 1988, Physical review. A, General physics.

[8]  William C. Troy,et al.  A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation , 1995 .

[9]  L. Gardner,et al.  A B-spline finite element method for the regularized long wave equation , 1995 .

[10]  Arjen Doelman,et al.  On the transition from the Ginzburg-Landau equation to the extended Fisher-Kolmogorov equation , 1998 .

[11]  S. G. Rubin,et al.  A cubic spline approximation for problems in fluid mechanics , 1975 .

[12]  A. K. Pani,et al.  Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation , 2005 .

[13]  William C. Troy,et al.  Spatial patterns described by the extended Fisher-Kolmogorov equation: periodic solutions , 1997 .

[14]  William C. Troy,et al.  Chaotic Spatial Patterns Described by the Extended Fisher–Kolmogorov Equation , 1996 .

[15]  W. Zimmermann,et al.  Propagating fronts near a Lifshitz point. , 1991, Physical review letters.

[16]  S. Shtrikman,et al.  Critical Behavior at the Onset of k --> -Space Instability on the lamda Line , 1975 .

[17]  Ahmet Boz,et al.  B-spline Galerkin methods for numerical solutions of the Burgers' equation , 2005, Appl. Math. Comput..

[18]  Idris Dag,et al.  QUINTIC B-SPLINE COLLOCATION METHOD FOR NUMERICAL SOLUTION OF THE RLW EQUATION , 2008, The ANZIAM Journal.

[19]  Dee Gt,et al.  Bistable systems with propagating fronts leading to pattern formation. , 1988 .