Electronic structures of single-walled carbon nanotubes encapsulating ellipsoidal C70.

The molecular orientation of ellipsoidal C(70) in single-walled carbon nanotubes (SWCNTs) depends on the tube diameter (d(t)). Photoluminescence (PL) studies reveal that the fullerene encapsulation effects on the optical transition energy of SWCNTs are significantly different for C(70) and C(60) at d(t) = 1.405-1.431 nm. This indicates that the transition from the "lying" alignment to the "standing" alignment occurs at d(t) ≈ 1.41 nm and the electronic states of SWCNTs are very sensitive to the interspacing between the encapsulated molecules and the SWCNTs. The present findings suggest that the electronic structure of SWCNTs is tunable not only by alternating the encapsulated molecules but also by controlling their molecular orientations, thus paving the way for development of novel SWCNT-based devices.

[1]  T. Nakanishi,et al.  Host-guest interactions in azafullerene (C59N)-single-wall carbon nanotube (SWCNT) peapod hybrid structures. , 2010, Chemical communications.

[2]  Susumu Okada,et al.  Electron-state control of carbon nanotubes by space and encapsulated fullerenes , 2003 .

[3]  A. T. Johnson,et al.  Mapping the One-Dimensional Electronic States of Nanotube Peapod Structures , 2002, Science.

[4]  M. Chorro,et al.  Orientation of C{sub 70} molecules in peapods as a function of the nanotube diameter , 2007 .

[5]  Z. Gu,et al.  Standing or lying C70s encapsulated in carbon nanotubes with different diameters , 2005 .

[6]  M. Hodak,et al.  Ordered phases of fullerene molecules formed inside carbon nanotubes , 2003 .

[7]  Malcolm L. H. Green,et al.  Crystal-encapsulation-induced band-structure change in single-walled carbon nanotubes: Photoluminescence and Raman spectra , 2006 .

[8]  T. Okazaki,et al.  Bandgap modulation of carbon nanotubes by encapsulated metallofullerenes , 2002, Nature.

[9]  Hiromichi Kataura,et al.  Optical properties of fullerene and non-fullerene peapods , 2002 .

[10]  R. Smalley,et al.  Structure-Assigned Optical Spectra of Single-Walled Carbon Nanotubes , 2002, Science.

[11]  J. Ihm,et al.  Orbital hybridization and charge transfer in carbon nanopeapods. , 2003, Physical review letters.

[12]  S. Okada,et al.  Diameter-Dependent Band Gap Modification of Single-Walled Carbon Nanotubes by Encapsulated Fullerenes , 2009 .

[13]  A. Soper,et al.  Molecular structure of the C70 fullerene , 1994 .

[14]  A. Khlobystov,et al.  Noncovalent interactions of molecules with single walled carbon nanotubes. , 2006, Chemical Society reviews.

[15]  S. Iijima,et al.  One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. , 2000, Physical review letters.

[16]  G. Andrew D. Briggs,et al.  Controlled orientation of ellipsoidal fullerene C70 in carbon nanotubes , 2004 .

[17]  Susumu Okada,et al.  Energetics and electronic structures of one-dimensional fullerene chains encapsulated in zigzag nanotubes , 2003 .

[18]  Phaedon Avouris,et al.  Nanotube electronics and optoelectronics , 2006 .

[19]  Toshiya Okazaki,et al.  Electron diffraction study of one-dimensional crystals of fullerenes , 2001 .

[20]  A one-dimensional Ising model for C70 molecular ordering in C70-peapods , 2003 .

[21]  D. Bethune,et al.  Fullerene Structure and Dynamics: A Magnetic Resonance Potpourri , 1992 .

[22]  Hiromichi Kataura,et al.  Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes , 2003, Nature materials.

[23]  P. Albouy,et al.  Transformation of C70 peapods into double walled carbon nanotubes , 2010 .

[24]  S. Okada,et al.  Interaction between single-wall carbon nanotubes and encapsulated C60 probed by resonance Raman spectroscopy. , 2010, Physical chemistry chemical physics : PCCP.

[25]  K. Michel,et al.  Nanotube field and orientational properties ofC70molecules in carbon nanotubes , 2007 .

[26]  S. Okada,et al.  Optical band gap modification of single-walled carbon nanotubes by encapsulated fullerenes. , 2008, Journal of the American Chemical Society.

[27]  M. Monthioux Filling single-wall carbon nanotubes , 2002 .

[28]  Yang,et al.  Electronic structure of deformed carbon nanotubes , 2000, Physical review letters.

[29]  A. H. R. Palser,et al.  Interlayer interactions in graphite and carbon nanotubes , 1999 .