First synoptic analysis of volcanic degassing in Papua New Guinea

We report the first satellite‐based survey of volcanic sulphur dioxide (SO2) degassing in Papua New Guinea, using Ozone Monitoring Instrument (OMI) data. OMI is sensitive to low‐level passive degassing. These observations are useful for volcano monitoring, hazard assessment (particularly aviation hazard) and assessment of arc geochemical budgets and are of immense value in remote regions with little ground‐based instrumentation, such as Papua New Guinea. We identify Bagana, Manam, Rabaul, Ulawun and Langila as the active sources of volcanic SO2 in Papua New Guinea, with Bagana being the largest source. We present an OMI SO2 time series for 2005–2008 and a total detected regional output of ∼1.8 × 109 kg SO2. About 40% of emissions were released by major eruption events at Manam (January 2005), Bagana (June 2006) and Rabaul (October 2006). Over the past century however, we estimate that major explosive eruptions contribute <5% of the arc‐scale SO2emission budget. Ground‐based DOAS measurements of SO2 degassing at five of Papua New Guinea's volcanoes are compared with our OMI observations. The total OMI SO2 output is only ∼20% of the total extrapolated from DOAS, a discrepancy which we demonstrate is consistent with other volcanic arcs. Therefore, the true total regional SO2 output may be considerably higher than that detected by OMI. Uncertainties in the OMI SO2data include the effects of in‐plume chemical processing and dilution of SO2 prior to the satellite overpass, OMI's reduced sensitivity to low levels of SO2 in the planetary boundary layer and interference by meteorological clouds.

[1]  M. Edmonds,et al.  Volatiles in subduction zone magmatism , 2014 .

[2]  S. Carn,et al.  First estimate of volcanic SO2 budget for Vanuatu island arc , 2012 .

[3]  Simon A. Carn,et al.  Opportunistic validation of sulfur dioxide in the Sarychev Peak volcanic eruption cloud , 2011 .

[4]  S. Carn,et al.  A comparison of AIRS, MODIS and OMI sulphur dioxide retrievals in volcanic clouds , 2011 .

[5]  Glenn S. Diskin,et al.  In situ measurements of tropospheric volcanic plumes in Ecuador and Colombia during TC4 , 2011 .

[6]  P. Wallace,et al.  The Sulfur Budget in Magmas: Evidence from Melt Inclusions, Submarine Glasses, and Volcanic Gas Emissions , 2011 .

[7]  Alessandro Aiuppa,et al.  Ozone depletion in tropospheric volcanic plumes , 2010 .

[8]  Ultraviolet Sensing of Volcanic Sulfur Emissions , 2010 .

[9]  Christoph Kern,et al.  Network for Observation of Volcanic and Atmospheric Change (NOVAC)—A global network for volcanic gas monitoring: Network layout and instrument description , 2010 .

[10]  M. Sandiford,et al.  The big crunch: Physical and chemical expressions of arc/continent collision in the Western Bismarck arc , 2010 .

[11]  Arlin J. Krueger,et al.  Validation of ozone monitoring instrument SO2 measurements in the Okmok volcanic cloud over Pullman, WA, July 2008 , 2010 .

[12]  A. Tupper,et al.  Reducing discrepancies in ground and satellite-observed eruption heights , 2009 .

[13]  D. Pyle,et al.  Halogens in igneous processes and their fluxes to the atmosphere and oceans from volcanic activity: A review , 2009 .

[14]  S. Carn,et al.  Surge in sulphur and halogen degassing from Ambrym volcano, Vanuatu , 2009 .

[15]  B. Langmann,et al.  Meteorological influence on the seasonal and diurnal variability of the dispersion of volcanic emissions in Nicaragua: A numerical model study , 2009 .

[16]  S. Eggins,et al.  Temporal Variations in U-series Disequilibria in an Active Caldera, Rabaul, Papua New Guinea , 2009 .

[17]  A. McGonigle,et al.  Total volatile flux from Mount Etna , 2008 .

[18]  S. Carn,et al.  Daily monitoring of Ecuadorian volcanic degassing from space , 2008 .

[19]  Hugo Yepes,et al.  Degassing patterns of Tungurahua volcano (Ecuador) during the 1999–2006 eruptive period, inferred from remote spectroscopic measurements of SO2 emissions , 2008 .

[20]  Clive Oppenheimer,et al.  SO2 loss rates in the plume emitted by Soufriere Hills volcano, Montserrat , 2008 .

[21]  C. Oppenheimer,et al.  SO 2 loss rates in the plume emitted by Soufrière Hills volcano , Montserrat , 2008 .

[22]  Arlin J. Krueger,et al.  Retrieval of large volcanic SO2 columns from the Aura Ozone Monitoring Instrument: Comparison and limitations , 2007 .

[23]  Simon A. Carn,et al.  Facing the Challenges of the International Airways Volcano Watch: The 2004/05 Eruptions of Manam, Papua New Guinea , 2007 .

[24]  Heikki Saari,et al.  The ozone monitoring instrument , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[25]  Kai Yang,et al.  Band residual difference algorithm for retrieval of SO/sub 2/ from the aura ozone monitoring instrument (OMI) , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[26]  C. Oppenheimer,et al.  A reassessment of current volcanic emissions from the Central American arc with specific examples from Nicaragua , 2006 .

[27]  P. Wallace Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data , 2005 .

[28]  A. Harris,et al.  MODVOLC: near-real-time thermal monitoring of global volcanism , 2004 .

[29]  A. McGonigle,et al.  SO2depletion in tropospheric volcanic plumes: VOLCANIC SO2DEPLETION , 2004 .

[30]  C. Oppenheimer,et al.  SO2 depletion in tropospheric volcanic plumes , 2004 .

[31]  Fred Prata,et al.  An evaluation of volcanic cloud detection techniques during recent significant eruptions in the western 'Ring of Fire' , 2004 .

[32]  Clive Oppenheimer,et al.  Sulphur dioxide fluxes from Papua New Guinea's volcanoes , 2004 .

[33]  Robert Wright,et al.  Space-based estimate of the volcanic heat flux into the atmosphere during 2001 and 2002 , 2004 .

[34]  S. Carn,et al.  Prodigious sulfur dioxide emissions from Nyamuragira volcano, D.R. Congo , 2003 .

[35]  Pawan K. Bhartia,et al.  Atmospheric products from the ozone monitoring instrument (OMI) , 2003, SPIE Optics + Photonics.

[36]  H. Graf,et al.  Injection of gases into the stratosphere by explosive volcanic eruptions , 2003 .

[37]  Clive Oppenheimer,et al.  Automated, high time-resolution measurements of SO2 flux at Soufrière Hills Volcano, Montserrat , 2003 .

[38]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[39]  S. Carn,et al.  Prodigious sulfur dioxide emissions from Nyamuragira volcano , , 2003 .

[40]  P. Delmelle Environmental impacts of tropospheric volcanic gas plumes , 2003, Geological Society, London, Special Publications.

[41]  Hans-F. Graf,et al.  The annual volcanic gas input into the atmosphere, in particular into the stratosphere: a global data set for the past 100 years , 2002 .

[42]  K. Lambeck,et al.  Present-day crustal motion in Papua New Guinea , 2000 .

[43]  A. Robock Volcanic eruptions and climate , 2000 .

[44]  R. Andres,et al.  A time‐averaged inventory of subaerial volcanic sulfur emissions , 1998 .

[45]  S. Eggins,et al.  Magma Genesis in the New Britain Island Arc: Further Insights into Melting and Mass Transfer Processes , 1998 .

[46]  C. Oppenheimer,et al.  Depletion rates of sulfur dioxide in tropospheric volcanic plumes , 1998 .

[47]  J. Feichter,et al.  Volcanic sulfur emissions: Estimates of source strength and its contribution to the global sulfate distribution , 1997 .

[48]  S. J. Schaefer,et al.  Volatiles from the 1994 Eruptions of Rabaul: Understanding Large Caldera Systems , 1996, Science.

[49]  Arlin J. Krueger,et al.  Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments , 1995 .

[50]  A. Krueger,et al.  Ice in the 1994 Rabaul eruption cloud: implications for volcano hazard and atmospheric effects , 1995, Nature.

[51]  Hiroshi Shinohara,et al.  Excessive degassing of Izu-Oshima volcano: magma convection in a conduit , 1994 .

[52]  D. Eatough,et al.  The Conversion of SO2 to Sulfate in the Atmosphere , 1994 .

[53]  A. Krueger,et al.  The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations , 1993, Nature.

[54]  E. Honza,et al.  Plate boundaries and evolution of the Solomon Sea region , 1987 .

[55]  E. Honza,et al.  The New Britain trench and 149° embayment, Western Solomon Sea , 1987 .

[56]  B. Huebert,et al.  Annual contribution of sulfur dioxide to the atmosphere by volcanoes , 1987 .

[57]  R. Johnson,et al.  Manam Island, Papua New Guinea: Petrology and Geochemistry of a Low-TiO2 Basaltic Island-Arc Volcano , 1985 .

[58]  R. Blong,et al.  Rabaul Caldera, Papua New Guinea: Volcanic hazards, surveillance, and eruption contingency planning , 1985 .

[59]  W. Jaeschke,et al.  The contribution of volcanoes to the global atmospheric sulfur budget , 1983 .

[60]  R. Johnson,et al.  Bamus volcano, Papua New Guinea: Dormant neighbour of Ulawun, and magnesian-andesite locality , 1983 .

[61]  R. Johnson,et al.  Strontium isotope ratios of quaternary volcanic rocks from Papua New Guinea , 1974 .

[62]  G. Thompson,et al.  Basaltic Nuees Ardentes of the 1970 Eruption of Ulawun Volcano, New Britain , 1972 .

[63]  I. Smith,et al.  Geology of Eastern Papua , 1971 .

[64]  D. Blake Post miocene volcanoes on Bougainville Island, territory of Papua and New Guinea , 1968 .