Nonlocal electrostatic approach to the double layer and adsorption at the electrode-electrolyte interface

Abstract Nonlocal electrostatic (NE) theory is a convenient tool for taking into account the collective properties of the system in the phenomena associated with electric interactions in condensed media. Application of NE to electrochemical systems allows one to describe the structure of the metal and the solvent in contact. Basic concepts of NE with emphasis on the metal-solvent interface are discussed; various consequences in the theory of the double layer and adsorption are reviewed.

[1]  D. Grahame Capacity of the Electrical Double Layer between Mercury and Aqueous Sodium Fluoride. II. Effect of Temperature and Concentration , 1957 .

[2]  O. K. Rice Application of the Fermi Statistics to the Distribution of Electrons Under Fields in Metals and the Theory of Electrocapillarity , 1928 .

[3]  S. H. Liu Lattice gas model for the metal-electrolyte interface , 1980 .

[4]  M. Born Volumen und Hydratationswärme der Ionen , 1920 .

[5]  A. A. Kornyshev,et al.  Polar solvent structure in the theory of ionic solvation , 1974 .

[6]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[7]  A. Kornyshev,et al.  Image potential near a dielectric–plasma‐like medium interface , 1977 .

[8]  Joshua R. Smith,et al.  Self-consistent many-electron theory of electron work functions and surface potential characteristics for selected metals. , 1969 .

[9]  G. Pálinkás,et al.  Liquid water: I. Electron scattering , 1977 .

[10]  F. Stillinger,et al.  Statistical Mechanical Theory of Double-Layer Structure and Properties , 1963 .

[11]  K. Unger,et al.  The Linear Dielectric Response of a Semiconductor: A New Analytic Form for the Dielectric Function , 1974 .

[12]  W. Kohn,et al.  Theory of Metal Surfaces: Induced Surface Charge and Image Potential. , 1973 .

[13]  W. Kohn,et al.  Self-Consistent Screening of Charges Embedded in a Metal Surface , 1972 .

[14]  J. Heinrichs Response of Metal Surfaces to Static and Moving Point Charges and to Polarizable Charge Distributions , 1973 .

[15]  P. Delahay,et al.  Advances in Electrochemistry and Electrochemical Engineering , 1964 .

[16]  J. G. Powles,et al.  The structure of molecular liquids by neutron scattering , 1973 .

[17]  F. Stillinger,et al.  Theory of the Diffuse Double Layer , 1960 .

[18]  P. Delahay,et al.  Double Layer and Electrode Kinetics , 1965 .

[19]  G. Pálinkás,et al.  Liquid water II. Experimental atom pair-correlation functions of liquid D2O , 1977 .

[20]  K. Schulze On the dielectric response of solids I. New approximations for the treatment of local field effects , 1979 .

[21]  A. L. Kuzemsky,et al.  Nonequilibrium Statistical Thermodynamics , 2017 .

[22]  D. R. Penn,et al.  Wave-Number-Dependent Dielectric Function of Semiconductors , 1962 .

[23]  P. Platzman,et al.  Waves and interactions in solid state plasmas , 1973 .

[24]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[25]  J. C. Inkson Many-body effects at metal-semiconductor junctions. I. Surface plasmons and the electron-electron screened interaction , 1972 .

[26]  H. Ehrenreich,et al.  Self-Consistent Field Approach to the Many-Electron Problem , 1959 .

[27]  N. Mott,et al.  The interface between a metal and an electrolyte , 1961 .

[28]  N. O. Lipari,et al.  Interpretation of acceptor spectra in semiconductors , 1978 .

[29]  V. S. Bagotskii,et al.  KINETICS OF ELECTRODE PROCESSES , 1967 .

[30]  Walter Kohn,et al.  Theory of Metal Surfaces: Charge Density and Surface Energy , 1970 .

[31]  H. Scheraga,et al.  CURRENT STATUS OF THE WATER‐STRUCTURE PROBLEM; APPLICATION TO PROTEINS * , 1973, Annals of the New York Academy of Sciences.

[32]  M. A. Vorotyntsev,et al.  Model non-local electrostatics. III. Cylindrical interface , 1979 .

[33]  R. R. Dogonadze The Theoretical Investigation of Charge Transfer Processes in Polar Media , 1971 .

[34]  M. A. Vorotyntsev,et al.  Model nonlocal electrostatics. I , 1978 .

[35]  S. Levine,et al.  Comparison of theories of the aqueous electric double layer at a charged plane interface , 1978 .

[36]  M. A. Vorotyntsev,et al.  Theory of light absorption by ions in solution , 1975 .

[37]  R. Watts-tobin The interface between a metal and an electrolytic solution , 1961 .

[38]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[39]  Roger H. Taylor A simple, useful analytical form of the static electron gas dielectric function , 1978 .

[40]  B. B. Owen,et al.  The Physical Chemistry of Electrolytic Solutions , 1963 .

[41]  Brian E. Conway,et al.  The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution , 1951 .

[42]  A. Maradudin,et al.  Theory of dielectrics , 1949 .

[43]  R. Gomer,et al.  Theory of Field Desorption , 1963 .

[44]  L. Blum Theory of electrified interfaces , 1977 .

[45]  Walter A. Harrison,et al.  Solid state theory , 1970 .

[46]  H. Hurwitz,et al.  Proprietes d'equilibre des systemes polarises. Cas de la partie diffuse de la double couche electrochimique , 1964 .

[47]  J. Macdonald Theory of the Differential Capacitance of the Double Layer in Unadsorbed Electrolytes , 1954 .

[48]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[49]  M. A. Vorotyntsev,et al.  Model nonlocal electrostatics. II. Spherical interface , 1978 .

[50]  K. Schulze On the dielectric response of solids II. Local field effects in the phonon‐induced density change of a semiconductor , 1979 .

[51]  A. Animalu Non-local dielectric screening in metals , 1965 .

[52]  A. Frumkin XLIII. On the theory of electrocapillarity: II , 1920 .

[53]  N. O. Lipari Dielectric function for alkali halide crystals , 1971 .