Isochronicity into a family of time-reversible cubic vector fields

In this work, we study necessary and sufficient conditions for the existence of isochronous centers into a family of cubic time-reversible systems. This class of reversible systems is characterized by the existence of an inverse integrating factor which is a certain power of an invariant straight line.

[1]  Massimo Villarini,et al.  Regularity properties of the period function near a center of a planar vector field , 1992 .

[2]  Christiane Rousseau,et al.  Linearization of Isochronous Centers , 1995 .

[3]  J. Chavarriga,et al.  Isochronous centers of cubic reversible systems , 1999 .

[4]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fifth degree homogeneous polynomials , 2000 .

[5]  Christiane Rousseau,et al.  Local Bifurcations of Critical Periods in the Reduced Kukles System , 1997, Canadian Journal of Mathematics.

[6]  Christiane Rousseau,et al.  DARBOUX LINEARIZATION AND ISOCHRONOUS CENTERS WITH A RATIONAL FIRST INTEGRAL , 1997 .

[7]  B. Schuman Sur la forme normale de Birkhoff et les centres isochrones , 1996 .

[8]  Jaume Giné,et al.  A Class of Reversible Cubic Systems with an Isochronous Center , 1999 .

[9]  Jaume Giné,et al.  Isochronous centers of a linear center perturbed by fourth degree homogeneous polynomial , 1999 .

[10]  Colin Christopher,et al.  Isochronous centers in planar polynomial systems , 1997 .

[11]  C. Rousseau,et al.  Local Bifurcation of Critical Periods in Vector Fields With Homogeneous Nonlinearities of the Third Degree , 1993, Canadian Mathematical Bulletin.

[12]  Jaume Giné,et al.  On the Integrability of Two-Dimensional Flows , 1999 .

[13]  H. Zoladek,et al.  The classification of reversible cubic systems with center , 1994 .

[14]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[15]  Carmen Chicone,et al.  Bifurcation of critical periods for plane vector fields , 1989 .

[16]  Javier Chavarriga,et al.  Integrable systems in the plane with center type linear part , 1994 .