ELiRF-UPV at SemEval-2019 Task 3: Snapshot Ensemble of Hierarchical Convolutional Neural Networks for Contextual Emotion Detection

This paper describes the approach developed by the ELiRF-UPV team at SemEval 2019 Task 3: Contextual Emotion Detection in Text. We have developed a Snapshot Ensemble of 1D Hierarchical Convolutional Neural Networks to extract features from 3-turn conversations in order to perform contextual emotion detection in text. This Snapshot Ensemble is obtained by averaging the models selected by a Genetic Algorithm that optimizes the evaluation measure. The proposed ensemble obtains better results than a single model and it obtains competitive and promising results on Contextual Emotion Detection in Text.

[1]  Diyi Yang,et al.  Hierarchical Attention Networks for Document Classification , 2016, NAACL.

[2]  Ilya Sutskever,et al.  Learning to Generate Reviews and Discovering Sentiment , 2017, ArXiv.

[3]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL 2006.

[4]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[5]  Rada Mihalcea,et al.  ICON: Interactive Conversational Memory Network for Multimodal Emotion Detection , 2018, EMNLP.

[6]  Saif Mohammad,et al.  SemEval-2018 Task 1: Affect in Tweets , 2018, *SEMEVAL.

[7]  Steven Bird,et al.  NLTK: The Natural Language Toolkit , 2002, ACL.

[8]  Rada Mihalcea,et al.  DialogueRNN: An Attentive RNN for Emotion Detection in Conversations , 2018, AAAI.

[9]  D. Keltner,et al.  How Emotions Work: The Social Functions of Emotional Expression in Negotiations , 2000 .

[10]  Kilian Q. Weinberger,et al.  Snapshot Ensembles: Train 1, get M for free , 2017, ICLR.

[11]  Venkatesh Duppada,et al.  SeerNet at SemEval-2018 Task 1: Domain Adaptation for Affect in Tweets , 2018, *SEMEVAL.

[12]  Alon Rozental,et al.  Amobee at IEST 2018: Transfer Learning from Language Models , 2018, WASSA@EMNLP.

[13]  Iyad Rahwan,et al.  Using millions of emoji occurrences to learn any-domain representations for detecting sentiment, emotion and sarcasm , 2017, EMNLP.

[14]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[15]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[16]  Ming Zhou,et al.  Learning Sentiment-Specific Word Embedding for Twitter Sentiment Classification , 2014, ACL.

[17]  Saif Mohammad,et al.  IEST: WASSA-2018 Implicit Emotions Shared Task , 2018, WASSA@EMNLP.

[18]  Yoon Kim,et al.  Convolutional Neural Networks for Sentence Classification , 2014, EMNLP.

[19]  Wesley De Neve,et al.  Multimedia Lab @ ACL WNUT NER Shared Task: Named Entity Recognition for Twitter Microposts using Distributed Word Representations , 2015, NUT@IJCNLP.

[20]  Kedhar Nath Narahari,et al.  SemEval-2019 Task 3: EmoContext Contextual Emotion Detection in Text , 2019, *SEMEVAL.

[21]  Ming-Wei Chang,et al.  BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding , 2019, NAACL.

[22]  Erik Cambria,et al.  Conversational Memory Network for Emotion Recognition in Dyadic Dialogue Videos , 2018, NAACL.