Tunable and attractive magnetic properties of FeBPSiCu alloys

[1]  Wei Zhang,et al.  A study on the role of Ni content on structure and properties of Fe–Ni–Si–B–P–Cu nanocrystalline alloys , 2020 .

[2]  Tao Zhang,et al.  Thermal, structural and soft magnetic properties of FeSiBPCCu alloys , 2020 .

[3]  B. Shen,et al.  High Bs of FePBCCu nanocrystalline alloys with excellent soft-magnetic properties , 2020 .

[4]  Kiyonori Suzuki,et al.  Nanocrystalline soft magnetic materials with a saturation magnetization greater than 2 T , 2019, Journal of Magnetism and Magnetic Materials.

[5]  B. Shen,et al.  Microstructure and soft-magnetic properties of FeCoPCCu nanocrystalline alloys , 2019, Journal of Materials Science & Technology.

[6]  J. K. Chen,et al.  Influence of Ni substitution for B on crystallization behavior, microstructure and magnetic properties of FeBCu alloys , 2019, Journal of Magnetism and Magnetic Materials.

[7]  Tao Zhang,et al.  Tunable magnetic properties and heat-treatable bending ductility of Fe-Co-B-P-C amorphous alloys with a high saturated magnetization up to 1.79 T , 2019, Journal of Alloys and Compounds.

[8]  Hu Li,et al.  Improvement of soft magnetic properties for distinctly high Fe content amorphous alloys via longitudinal magnetic field annealing , 2019, Journal of Magnetism and Magnetic Materials.

[9]  B. Shen,et al.  Enhanced plasticity of FeCoBSiNb bulk glassy alloys by controlling the structure heterogeneity with Cu addition , 2019, Journal of Non-Crystalline Solids.

[10]  B. Shen,et al.  Synthesis of novel FeSiBPCCu alloys with high amorphous forming ability and good soft magnetic properties , 2019, Journal of Non-Crystalline Solids.

[11]  Aina He,et al.  Significant improvement of soft magnetic properties for Fe(Co)BPSiC amorphous alloys by magnetic field annealing , 2018 .

[12]  J. K. Chen,et al.  Local structure, nucleation sites and crystallization behavior and their effects on magnetic properties of Fe81SixB10P8−xCu1 (x = 0~8) , 2018, Scientific Reports.

[13]  A. Inoue,et al.  Soft magnetic Fe-Co-based amorphous alloys with extremely high saturation magnetization exceeding 1.9 T and low coercivity of 2 A/m , 2017 .

[14]  Yecheng Li,et al.  Effect of surface crystallization on magnetic properties of Fe82Cu1Si4B11.5Nb1.5 nanocrystalline alloy ribbons , 2017 .

[15]  F. Kong,et al.  Ferromagnetic element microalloying and clustering effects in high Bs Fe-based amorphous alloys , 2017 .

[16]  Kiyonori Suzuki,et al.  Copper-free nanocrystalline soft magnetic materials with high saturation magnetization comparable to that of Si steel , 2017 .

[17]  Shao-xiong Zhou,et al.  Synthesis of FeSiBPNbCu nanocrystalline soft-magnetic alloys with high saturation magnetization , 2014 .

[18]  B. Shen,et al.  Effects of Cu substitution for Fe on the glass-forming ability and soft magnetic properties for Fe-based bulk metallic glasses , 2014 .

[19]  X. Wang,et al.  Enhancing glass-forming ability via frustration of nano-clustering in alloys with a high solvent content , 2013, Scientific Reports.

[20]  Tao Zhang,et al.  Effects of minor Cu addition on glass-forming ability and magnetic properties of FePCBCu alloys with high saturation magnetization , 2013 .

[21]  B. Shen,et al.  Crystallization behaviors of FeSiBPMo bulk metallic glasses , 2013 .

[22]  J. Blandin,et al.  Fractal growth of the dense-packing phase in annealed metallic glass imaged by high-resolution atomic force microscopy , 2012 .

[23]  Yuan Wu,et al.  Effects of nanocrystal formation on the soft magnetic properties of Fe-based bulk metallic glasses , 2011 .

[24]  M. Ohta,et al.  Three-dimensional atom probe study of Fe–B-based nanocrystalline soft magnetic materials , 2009 .

[25]  A. Makino,et al.  FeSiBP metallic glasses with high glass-forming ability and excellent magnetic properties , 2008 .

[26]  M. Ohta,et al.  Magnetic properties of nanocrystalline Fe82.65Cu1.35SixB16- x alloys (x=0-7) , 2007 .

[27]  Akira Takeuchi,et al.  Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element , 2005 .

[28]  T. Kulik,et al.  Influence of structure on coercivity in nanocrystalline (Fe1−xCox)86Hf7B6Cu1 alloys , 2005 .

[29]  Michael E. McHenry,et al.  Amorphous and nanocrystalline materials for applications as soft magnets , 1999 .

[30]  K. Hono,et al.  Cu clustering and Si partitioning in the early crystallization stage of an Fe73.5Si13.5B9Nb3Cu1 amorphous alloy , 1999 .

[31]  M. Tejedor,et al.  Mechanical determination of internal stresses in as-quenched magnetic amorphous metallic ribbons , 1997 .

[32]  K. Amiya,et al.  Preparation of Amorphous Fe–Si–B and Co–Si–B Alloy Wires by a Melt Extraction Method and Their Mechanical and Magnetic Properties , 1995 .

[33]  Akihiro Makino,et al.  Soft magnetic properties of nanocrystalline bcc Fe‐Zr‐B and Fe‐M‐B‐Cu (M=transition metal) alloys with high saturation magnetization (invited) , 1991 .

[34]  G. Herzer,et al.  Grain structure and magnetism of nanocrystalline ferromagnets , 1989, International Magnetics Conference.

[35]  Y. Yoshizawa,et al.  New Fe-based soft magnetic alloys composed of ultrafine grain structure , 1988 .