Polygon Evolution by Vertex Deletion

We propose a simple approach to evolution of polygonal curves that is specially designed to fit discrete nature of curves in digital images. It leads to simplification of shape complexity with no blurring (i.e., shape rounding) effects and no dislocation of relevant features. Moreover, in our approach the problem to determine the size of discrete steps for numerical implementations does not occur, since our evolution method leads in a natural way to a finite number of discrete evolution steps which are just the iterations of a basic procedure of vertex deletion.

[1]  M. Grayson The heat equation shrinks embedded plane curves to round points , 1987 .

[2]  Wolfgang Förstner,et al.  Model-Based 2D-Shape Recovery , 1995, DAGM-Symposium.

[3]  Joachim Weickert,et al.  A Review of Nonlinear Diffusion Filtering , 1997, Scale-Space.

[4]  B KimiaBenjamin,et al.  Shapes, shocks, and deformations I , 1995 .

[5]  Joachim Weickert A Review of Nonlinear Diiusion Filtering , 1997 .

[6]  Urs Ramer,et al.  An iterative procedure for the polygonal approximation of plane curves , 1972, Comput. Graph. Image Process..

[7]  Jan-Olof Eklundh,et al.  Shape Representation by Multiscale Contour Approximation , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Ulrich Eckhardt,et al.  Continuity of the discrete curve evolution , 1999, Optics & Photonics.

[9]  Longin Jan Latecki,et al.  Convexity Rule for Shape Decomposition Based on Discrete Contour Evolution , 1999, Comput. Vis. Image Underst..

[10]  Tony Lindeberg,et al.  Scale-Space Theory in Computer Vision , 1993, Lecture Notes in Computer Science.

[11]  Kaleem Siddiqi,et al.  Geometric Heat Equation and Nonlinear Diffusion of Shapes and Images , 1996, Comput. Vis. Image Underst..

[12]  Naonori Ueda,et al.  Learning Visual Models from Shape Contours Using Multiscale Convex/Concave Structure Matching , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  Guillermo Sapiro,et al.  Evolutions of Planar Polygons , 1995, Int. J. Pattern Recognit. Artif. Intell..

[14]  Andrew P. Witkin,et al.  Scale-Space Filtering , 1983, IJCAI.

[15]  Farzin Mokhtarian,et al.  A Theory of Multiscale, Curvature-Based Shape Representation for Planar Curves , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Roland T. Chin,et al.  On the Detection of Dominant Points on Digital Curves , 1989, IEEE Trans. Pattern Anal. Mach. Intell..