Mean-Field Analysis of the q-Voter Model on Networks

We present a detailed investigation of the behavior of the nonlinear q-voter model for opinion dynamics. At the mean-field level we derive analytically, for any value of the number q of agents involved in the elementary update, the phase diagram, the exit probability and the consensus time at the transition point. The mean-field formalism is extended to the case that the interaction pattern is given by generic heterogeneous networks. We finally discuss the case of random regular networks and compare analytical results with simulations.

[1]  J. Dushoff,et al.  Local frequency dependence and global coexistence. , 1999, Theoretical population biology.

[2]  Cristóbal López,et al.  Systems with two symmetric absorbing states: relating the microscopic dynamics with the macroscopic behavior. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  Alessandro Vespignani,et al.  Dynamical Processes on Complex Networks , 2008 .

[4]  Claudio Castellano Effect of network topology on the ordering dynamics of voter models , 2005 .

[5]  C Godreche,et al.  Phase ordering and persistence in a class of stochastic processes interpolating between the Ising and voter models , 1999 .

[6]  Mark Newman,et al.  Networks: An Introduction , 2010 .

[7]  Miguel A Muñoz,et al.  Nonperturbative fixed point in a nonequilibrium phase transition. , 2005, Physical review letters.

[8]  R. Pastor-Satorras,et al.  Heterogenous mean-field analysis of a generalized voter-like model on networks , 2011, 1106.4215.

[9]  A. Bray Theory of phase-ordering kinetics , 1994, cond-mat/9501089.

[10]  H. Hinrichsen,et al.  Critical coarsening without surface tension: the universality class of the voter model. , 2001, Physical review letters.

[11]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[12]  S. Redner,et al.  Voter models on heterogeneous networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  S. Fortunato,et al.  Statistical physics of social dynamics , 2007, 0710.3256.

[14]  S. Redner,et al.  A Kinetic View of Statistical Physics , 2010 .

[15]  R. A. Blythe,et al.  Ordering in voter models on networks: exact reduction to a single-coordinate diffusion , 2010, 1006.1557.

[16]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[17]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[18]  V. Eguíluz,et al.  Conservation laws for the voter model in complex networks , 2004, cond-mat/0408101.

[19]  Emanuele Pugliese,et al.  Heterogeneous pair approximation for voter models on networks , 2009, 0903.5489.

[20]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[21]  Romualdo Pastor-Satorras,et al.  Universal and nonuniversal features of the generalized voter class for ordering dynamics in two dimensions. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  T. Liggett,et al.  Stochastic Interacting Systems: Contact, Voter and Exclusion Processes , 1999 .

[23]  M. A. Muñoz,et al.  Nonlinear q-voter model. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  M. J. Oliveira,et al.  Nonequilibrium spin models with Ising universal behaviour , 1993 .

[25]  R. Holley,et al.  Ergodic Theorems for Weakly Interacting Infinite Systems and the Voter Model , 1975 .

[26]  S. Redner,et al.  Voter model on heterogeneous graphs. , 2004, Physical review letters.

[27]  P. Clifford,et al.  A model for spatial conflict , 1973 .

[28]  R. Pastor-Satorras,et al.  Epidemic spreading in correlated complex networks. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  M. A. Muñoz,et al.  Langevin description of critical phenomena with two symmetric absorbing states. , 2004, Physical review letters.

[30]  A. J. McKane,et al.  Stochastic models of evolution in genetics, ecology and linguistics , 2007, cond-mat/0703478.