Design of field-plate terminated 4H-SiC Schottky diodes using high-k dielectrics

Abstract Silicon carbide (SiC) field-plate terminated Schottky diodes using silicon dioxide (SiO 2 ) dielectric experience high electric field in the insulator and premature dielectric breakdown, attributed to the lower dielectric constant of the oxide. To alleviate this problem we explore the use of high- k dielectrics, silicon nitride (Si 3 N 4 ) and sapphire (Al 2 O 3 ), on 4H-SiC by numerical simulations using Medici. The simulation results show significant improvement in blocking voltages by as much as 30% and much lower electric field within the dielectrics. There is also a slight reduction in the specific-on resistance ( R sp-on ) and a small increase in the forward current density due to the formation of an accumulation layer in SiC where the metal overlaps the dielectric. This effect is enhanced with increasing dielectric constant and decreasing dielectric thickness for a given dielectric.

[1]  A numerical comparison between MOS control and junction control high voltage devices in SiC technology , 2003 .

[2]  Yimen Zhang,et al.  The study of Ni/4H-SiC SBD , 2001, 2001 6th International Conference on Solid-State and Integrated Circuit Technology. Proceedings (Cat. No.01EX443).

[3]  J. W. Palmour,et al.  Insulator investigation on SiC for improved reliability , 1999 .

[4]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[5]  H. Mitlehner,et al.  SiC devices: physics and numerical simulation , 1994 .

[6]  Q. Wahab,et al.  Ionization rates and critical fields in 4H silicon carbide , 1997 .

[7]  Y. Seki,et al.  The guard-ring termination for the high-voltage SiC Schottky barrier diodes , 1995, IEEE Electron Device Letters.

[8]  J. Rodriguez,et al.  Proposed universal relationship between dielectric breakdown and dielectric constant , 2002, Digest. International Electron Devices Meeting,.

[9]  M. Sochacki,et al.  Silicon dioxide and silicon nitride as a passivation and edge termination for 4H-SiC Schottky diodes , 2005 .

[10]  Jose Rebollo,et al.  Design of a reliable planar edge termination for SiC power devices , 2001, 2001 International Semiconductor Conference. CAS 2001 Proceedings (Cat. No.01TH8547).

[11]  M. Bhatnagar,et al.  Silicon carbide high-power devices , 1996 .

[12]  R. Davis,et al.  Electrical characteristics of metal/AlN/n‐type 6H–SiC(0001) heterostructures , 1996 .

[13]  Yuan Taur,et al.  Fundamentals of Modern VLSI Devices , 1998 .

[14]  M. Melloch,et al.  Design considerations and experimental analysis of high-voltage SiC Schottky barrier rectifiers , 1998 .

[15]  T. Sudarshan,et al.  Lateral current spreading in SiC Schottky diodes using metal overlap edge termination , 2001 .

[16]  In-Seok Yeo,et al.  Characteristics of n+ polycrystalline-Si/Al2O3/Si metal–oxide– semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor , 2001 .

[17]  Siegfried Selberherr,et al.  Enhancement of breakdown voltage for Ni-SiC Schottky diodes utilizing field plate edge termination , 2004, Microelectron. Reliab..

[18]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[19]  Tangali S. Sudarshan,et al.  Design rules for field plate edge termination in SiC Schottky diodes , 2001 .

[20]  R. S. Johnson,et al.  Characteristics of metalorganic remote plasma chemical vapor deposited Al2O3 gate stacks on SiC metal–oxide–semiconductor devices , 2001 .