Gibbs phenomenon for dispersive PDEs

We investigate the Cauchy problem for linear, constant-coefficient evolution PDEs on the real line with discontinuous initial conditions (ICs) in the small-time limit. The small-time behavior of the solution near discontinuities is expressed in terms of universal, computable special functions. We show that the leading-order behavior of the solution of dispersive PDEs near a discontinuity of the ICs is characterized by Gibbs-type oscillations and gives exactly the Wilbraham--Gibbs constants.

[1]  Terence Tao,et al.  Low-regularity global solutions to nonlinear dispersive equations , 2002 .

[2]  Yuji Kodama,et al.  The Whitham Equations for Optical Communications: Mathematical Theory of NRZ , 1997, SIAM J. Appl. Math..

[3]  Tamara Grava,et al.  Mathematik in den Naturwissenschaften Leipzig Numerical solution of the small dispersion limit of Korteweg de Vries and Whitham equations , 2005 .

[4]  A. Kamchatnov,et al.  Nonlinear periodic waves and their modulations , 2000 .

[5]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[6]  T. Trogdon,et al.  Riemann-Hilbert Problems, Their Numerical Solution, and the Computation of Nonlinear Special Functions , 2015 .

[7]  Luis Vega Schrödinger equations: pointwise convergence to the initial data , 1988 .

[8]  L. Debnath Solitons and the Inverse Scattering Transform , 2012 .

[9]  A. Michelson,et al.  Fourier's Series , 1898, Nature.

[10]  Gino Biondini,et al.  On the Whitham Equations for the Defocusing Nonlinear Schrodinger Equation with Step Initial Data , 2005, J. Nonlinear Sci..

[11]  P. Deift,et al.  A steepest descent method for oscillatory Riemann–Hilbert problems. Asymptotics for the MKdV equation , 1993 .

[12]  R. C. Y. Chin,et al.  A Dispersion Analysis for Difference Schemes: Tables of Generalized Airy Functions* , 1978 .

[13]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[14]  Athanassios S. Fokas,et al.  Unified Transform for Boundary Value Problems: Applications and Advances , 2014 .

[15]  I. Coddington,et al.  Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics , 2006 .

[16]  Mark J. Ablowitz,et al.  Solitons and the Inverse Scattering Transform , 1981 .

[17]  Luis Vega,et al.  Oscillatory integrals and regularity of dispersive equations , 1991 .

[18]  P. Sjölin,et al.  Regularity of solutions to the Schrödinger equation , 1987 .

[19]  Robert Jenkins,et al.  Semiclassical Limit of Focusing NLS for a Family of Square Barrier Initial Data , 2014 .

[20]  Bengt Fornberg,et al.  Accurate numerical resolution of transients in initial-boundary value problems for the heat equation , 2003 .

[21]  Athanassios S. Fokas,et al.  A Unified Approach To Boundary Value Problems , 2008 .

[22]  A. Gurevich,et al.  Nonstationary structure of a collisionless shock wave , 1973 .

[23]  Alexander Minakov,et al.  Riemann–Hilbert problems and the mKdV equation with step initial data: short-time behavior of solutions and the nonlinear Gibbs-type phenomenon , 2012 .

[24]  Michael Taylor,et al.  Short Time Behavior of Solutions to Nonlinear Schrödinger Equations in One and Two Space Dimensions , 2006 .

[25]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[26]  Gennady El,et al.  Decay of an initial discontinuity in the defocusing NLS hydrodynamics , 1995 .

[27]  Natasha Flyer,et al.  The Convergence of Spectral and Finite Difference Methods for Initial-Boundary Value Problems , 2001, SIAM J. Sci. Comput..

[28]  K. Mclaughlin,et al.  A nonlinear Gibbs-type phenomenon for the defocusing nonlinear Schrödinger equation , 2005 .

[29]  Kellen Petersen August Real Analysis , 2009 .

[30]  P. Deift,et al.  The collisionless shock region for the long-time behavior of solutions of the KdV equation , 1994 .

[31]  Sanghyuk Lee,et al.  On pointwise convergence of the solutions to Schrödinger equations in ℛ2 , 2006 .

[32]  T. Tao Nonlinear dispersive equations : local and global analysis , 2006 .

[33]  Boris Dubrovin,et al.  On Hamiltonian perturbations of hyperbolic systems of conservation laws , 2004 .

[34]  E. Hewitt,et al.  The Gibbs-Wilbraham phenomenon: An episode in fourier analysis , 1979 .

[35]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[36]  John P. Boyd,et al.  Compatibility conditions for time-dependent partial differential equations and the rate of convergence of Chebyshev and Fourier spectral methods , 1999 .

[37]  Peter D. Miller,et al.  Semiclassical soliton ensembles for the focusing nonlinear Schrödinger equation , 2000, nlin/0012034.

[38]  H. S. Carslaw,et al.  Introduction to the Theory of Fourier's Series and Integrals , 1921, Nature.

[39]  Gerald Teschl,et al.  Long-time asymptotics for the Korteweg–de Vries equation with step-like initial data , 2012, 1210.7434.

[40]  L. Chambers Linear and Nonlinear Waves , 2000, The Mathematical Gazette.