On shuffle products, acyclic automata and piecewise-testable languages

Abstract We show that the shuffle L ⊔ ⊔ F of a piecewise-testable language L and a finite language F is piecewise-testable. The proof relies on a classic but little-used automata-theoretic characterization of piecewise-testable languages. We also discuss some mild generalizations of the main result, and provide bounds on the piecewise complexity of L ⊔ ⊔ F .

[1]  Paul Gastin,et al.  A Survey on Small Fragments of First-Order Logic over Finite Words , 2008, Int. J. Found. Comput. Sci..

[2]  Thomas Schwentick,et al.  Partially-Ordered Two-Way Automata: A New Characterization of DA , 2001, Developments in Language Theory.

[3]  Philippe Schnoebelen,et al.  The height of piecewise-testable languages and the complexity of the logic of subwords , 2015, Log. Methods Comput. Sci..

[4]  Lila Kari,et al.  Deletion operations: closure properties , 1994 .

[5]  Denis Thérien,et al.  Classification of Finite Monoids: The Language Approach , 1981, Theor. Comput. Sci..

[6]  Jacques Sakarovitch,et al.  Some operations and transductions that preserve rationality , 1983 .

[7]  李幼升,et al.  Ph , 1989 .

[8]  Imre Simon,et al.  Piecewise testable events , 1975, Automata Theory and Formal Languages.

[9]  Philippe Schnoebelen,et al.  Decidability, complexity, and expressiveness of first-order logic over the subword ordering , 2017, 2017 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS).

[10]  Ondrej Klíma,et al.  Alternative Automata Characterization of Piecewise Testable Languages , 2013, Developments in Language Theory.

[11]  Ondrej Klíma,et al.  On biautomata , 2011, RAIRO Theor. Informatics Appl..

[12]  Pierre-Cyrille Héam,et al.  On Shuffle Ideals , 2002, RAIRO Theor. Informatics Appl..

[13]  Tomás Masopust,et al.  Piecewise Testable Languages and Nondeterministic Automata , 2016, MFCS.

[14]  Philippe Schnoebelen,et al.  The Height of Piecewise-Testable Languages with Applications in Logical Complexity , 2015, CSL.

[15]  Jacques Stern,et al.  Complexity of Some Problems from the Theory of Automata , 1985, Inf. Control..

[16]  Janusz A. Brzozowski,et al.  A generalization of finiteness , 1976 .

[17]  L. H. Haines On free monoids partially ordered by embedding , 1969 .

[18]  Michaël Thomazo,et al.  On Boolean combinations forming piecewise testable languages , 2017, Theor. Comput. Sci..

[19]  Antonio Restivo,et al.  On the Shuffle of Star-Free Languages , 2012, Fundam. Informaticae.

[20]  Zoltán Ésik,et al.  Modeling Literal Morphisms by Shuffle , 1998 .

[21]  Faith Ellen,et al.  Languages of R-Trivial Monoids , 1980, J. Comput. Syst. Sci..