A mixed integer programming for robust truss topology optimization with stress constraints

This paper presents a mixed integer programming (MIP) formulation for robust topology optimization of trusses subjected to the stress constraints under the uncertain load. A design‐dependent uncertainty model of the external load is proposed for dealing with the variation of truss topology in the course of optimization. For a truss with the discrete member cross‐sectional areas, it is shown that the robust topology optimization problem can be reduced to an MIP problem, which is solved globally. Numerical examples illustrate that the robust optimal topology of a truss depends on the magnitude of uncertainty. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  G. Nemhauser,et al.  Integer Programming , 2020 .

[2]  Xu Guo,et al.  Confidence extremal structural response analysis of truss structures under static load uncertainty via SDP relaxation , 2009 .

[3]  Xu Guo,et al.  Extreme structural response analysis of truss structures under material uncertainty via linear mixed 0–1 programming , 2008 .

[4]  Andrej Cherkaev,et al.  Minimax optimization problem of structural design , 2008 .

[5]  Mathias Stolpe,et al.  Global optimization of discrete truss topology design problems using a parallel cut-and-branch method , 2008 .

[6]  Christian Kanzow,et al.  Mathematical programs with vanishing constraints: optimality conditions and constraint qualifications , 2008, Math. Program..

[7]  C. Jiang,et al.  Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval , 2007 .

[8]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[9]  M. Stolpe,et al.  Truss topology optimization with discrete design variables—Guaranteed global optimality and benchmark examples , 2007 .

[10]  Izuru Takewaki,et al.  Worst case plastic limit analysis of trusses under uncertain loads via mixed 0-1 programming , 2007 .

[11]  Y. Kanno,et al.  Sequential Semidefinite Program for Maximum Robustness Design of Structures under Load Uncertainty , 2006 .

[12]  N. Katoh,et al.  Topology optimization of trusses with stress and local constraints on nodal stability and member intersection , 2005 .

[13]  I. Doltsinis,et al.  ROBUST DESIGN OF STRUCTURES USING OPTIMIZATION METHODS , 2004 .

[14]  Lesley F. Wright,et al.  Information Gap Decision Theory: Decisions under Severe Uncertainty , 2004 .

[15]  Leslie George Tham,et al.  Robust design of structures using convex models , 2003 .

[16]  Mathias Stolpe,et al.  Modelling topology optimization problems as linear mixed 0–1 programs , 2003 .

[17]  Arkadi Nemirovski,et al.  Robust optimization – methodology and applications , 2002, Math. Program..

[18]  G. Rozvany On design-dependent constraints and singular topologies , 2001 .

[19]  G. Cheng,et al.  An extrapolation approach for the solution of singular optima , 2000 .

[20]  C. Pantelides,et al.  Optimum structural design via convex model superposition , 2000 .

[21]  Chris P. Pantelides,et al.  Design of Trusses under Uncertain Loads Using Convex Models , 1998 .

[22]  G. Cheng,et al.  ε-relaxed approach in structural topology optimization , 1997 .

[23]  Arkadi Nemirovski,et al.  Robust Truss Topology Design via Semidefinite Programming , 1997, SIAM J. Optim..

[24]  R. Haftka,et al.  Structural design under bounded uncertainty-optimization with anti-optimization , 1994 .

[25]  Y. Kanno,et al.  Sequential Semidefinite Program for Robust Truss Optimization based on Robustness Functions associat , 2004 .

[26]  Kwon-Hee Lee,et al.  Robust optimization considering tolerances of design variables , 2001 .

[27]  Yakov Ben-Haim,et al.  Information-gap decision theory , 2001 .

[28]  On design-dependent constraints and singular topologies , 2001 .

[29]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[30]  G. Schuëller,et al.  Chair of Engineering Mechanics Ifm-publication 2-407 Developments in Stochastic Structural Mechanics , 2022 .