Trivial extensions subject to semi-regularity and semi-coherence
暂无分享,去创建一个
[1] M. Tamekkante,et al. Note on the Weak Global Dimension of Coherent Bi-amalgamations , 2017 .
[2] S. Kabbaj,et al. Zaks' conjecture on rings with semi-regular proper homomorphic images , 2016, 1604.03268.
[3] S. Kabbaj,et al. Matlis' semi-regularity in trivial ring extensions issued from integral domains , 2016, 1604.02795.
[4] N. Mahdou,et al. Trivial Ring Extensions Defined by Arithmetical-Like Properties , 2013 .
[5] B. Olberding. Prescribed subintegral extensions of local Noetherian domains , 2013, 1306.0870.
[6] N. Mahdou,et al. SELF INJECTIVE AMALGAMATED DUPLICATION OF A RING ALONG AN IDEAL , 2013 .
[7] B. Olberding. A counterpart to Nagata idealization , 2012, 1204.3962.
[8] S. Goto,et al. Almost Gorenstein rings , 2011, 1106.1301.
[9] N. Mahdou,et al. IF-dimension of Modules , 2010, Communications in Mathematics and Applications.
[10] D. D. Anderson,et al. Idealization of a Module , 2009 .
[11] M. Fontana,et al. Transfinite self-idealization and commutative rings of triangular matrices , 2009 .
[12] Farid Kourki. Sur les Extensions Triviales Commutatives , 2009 .
[13] S. Kabbaj,et al. Commutative rings in which every finitely generated ideal is quasi-projective , 2008, 0810.0359.
[14] N. Mahdou,et al. Trivial extensions defined by Prüfer conditions , 2008, 0808.0275.
[15] Sarah Glaz,et al. Gaussian properties of total rings of quotients , 2007 .
[16] J. Brewer,et al. Multiplicative ideal theory in commutative algebra : a tribute to the work of Robert Gilmer , 2006 .
[17] N. Mahdou,et al. Trivial Extensions Defined by Coherent-like Conditions , 2004, math/0606696.
[18] F. Couchot. Injective modules and fp-injective modules over valuation rings , 2003, math/0409519.
[19] R. Y. Sharp,et al. MODULES OVER NON-NOETHERIAN DOMAINS (Mathematical Surveys and Monographs 84) By LÁSZLÓ FUCHS and LUIGI SALCE: 613 pp., US$109.00, ISBN 0-8218-1963-1 (American Mathematical Society, Providence, RI, 2001) , 2002 .
[20] C. Weibel,et al. An Introduction to Homological Algebra: References , 1960 .
[21] Sarah Glaz. Finite conductor rings , 2000 .
[22] L. Fuchs,et al. Modules over non-Noetherian domains , 2000 .
[23] Sarah Glaz,et al. Commutative Coherent Rings , 1989 .
[24] J. Huckaba. Commutative Rings with Zero Divisors , 1988 .
[25] Dorin Popescu,et al. General Néron desingularization , 1985, Nagoya Mathematical Journal.
[26] G. Levin. Modules and Golod homomorphisms , 1985 .
[27] Eben Matlis. Commutative semi-coherent and semi-regular rings , 1985 .
[28] R. Damiano,et al. Commutative torsion stable rings , 1984 .
[29] M. Harada. Self mini-injective rings , 1982 .
[30] S. Goto. Approximately Cohen-Macaulay Rings , 1982 .
[31] J. Roos. Finiteness conditions in commutative algebra and solution of a problem of Vasconcelos. , 1982 .
[32] R. Colby. Rings which have flat injective modules , 1975 .
[33] Tor H. Gulliksen,et al. A Change of Ring Theorem with Applications to Poincaré Series and Intersection Multiplicity. , 1974 .
[34] J. Roos,et al. Explicit formulae for the global homological dimensions of trivial extensions of rings , 1973 .
[35] Saroj Jain. Flat and FP-injectivity , 1973 .
[36] R. Fossum. Commutative extensions by canonical modules are Gorenstein rings , 1973 .
[37] I. Reiten. The converse to a theorem of Sharp on Gorenstein modules , 1972 .
[38] Gabriel Sabbagh,et al. Embedding Problems for Modules and Rings with Application to Model-Companions , 1971 .
[39] C. U. Jensen. Arithmetical rings , 1966 .
[40] Hubert S. Butts,et al. Prüfer rings , 1966 .
[41] L. Fuchs. Über die Ideale arithmetischer Ringe , 1949 .
[42] Masayoshi Nagata,et al. Local Rings , 2022 .