Variational multiscale modeling with discontinuous subscales: analysis and application to scalar transport

Abstract We examine a variational multiscale method in which the unresolved fine-scales are approximated element-wise using a discontinuous Galerkin method. We establish stability and convergence results for the methodology as applied to the scalar transport problem, and we prove that the method exhibits optimal convergence rates in the SUPG-norm and is robust with respect to the Péclet number if the discontinuous subscale approximation space is sufficiently rich. We apply the method to isogeometric NURBS discretizations of steady and unsteady transport problems, and the corresponding numerical results demonstrate that the method is stable and accurate in the advective limit even when low-order discontinuous subscale approximations are employed.

[1]  Chi-Wang Shu,et al.  Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems , 2001, J. Sci. Comput..

[2]  Chi-Wang Shu,et al.  Discontinuous Galerkin Methods: General Approach and Stability , 2008 .

[3]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: VI. Convergence analysis of the generalized SUPG formulation for linear time-dependent multi-dimensional advective-diffusive systems , 1987 .

[4]  L. Evans,et al.  Partial Differential Equations , 1941 .

[5]  Thomas J. R. Hughes,et al.  Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements , 2013, Numerische Mathematik.

[6]  Giancarlo Sangalli,et al.  Variational Multiscale Analysis: the Fine-scale Green's Function, Projection, Optimization, Localization, and Stabilized Methods , 2007, SIAM J. Numer. Anal..

[7]  Thomas J. R. Hughes,et al.  What are C and h ?: inequalities for the analysis and design of finite element methods , 1992 .

[8]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[9]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[10]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[11]  Alessandro Russo,et al.  CHOOSING BUBBLES FOR ADVECTION-DIFFUSION PROBLEMS , 1994 .

[12]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[13]  Alessandro Russo,et al.  Applications of the pseudo residual-free bubbles to the stabilization of convection-diffusion problems , 1998 .

[14]  John Chapman,et al.  On the Stability of Continuous–Discontinuous Galerkin Methods for Advection–Diffusion–Reaction Problems , 2012, J. Sci. Comput..

[15]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[16]  J. A. Cottrell Isogeometric analysis and numerical modeling of the fine scales within the variational multiscale method , 2007 .

[17]  Blanca Ayuso de Dios,et al.  Discontinuous Galerkin Methods for Advection-Diffusion-Reaction Problems , 2009, SIAM J. Numer. Anal..

[18]  Endre Süli,et al.  Modeling subgrid viscosity for advection–diffusion problems , 2000 .

[19]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[20]  Thomas J. R. Hughes,et al.  Isogeometric divergence-conforming B-splines for the unsteady Navier-Stokes equations , 2013, J. Comput. Phys..

[21]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[22]  Yuri Bazilevs,et al.  Isogeometric divergence-conforming variational multiscale formulation of incompressible turbulent flows , 2017 .

[23]  F. Brezzi,et al.  A relationship between stabilized finite element methods and the Galerkin method with bubble functions , 1992 .

[24]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for linear convection-diffusion equations , 2009, Journal of Computational Physics.

[25]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[26]  Franco Brezzi,et al.  Augmented spaces, two‐level methods, and stabilizing subgrids , 2002 .

[27]  Victor M. Calo,et al.  Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .

[28]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part II – Analysis for P1 and Q1 finite elements , 2008 .

[29]  Jim Douglas,et al.  An absolutely stabilized finite element method for the stokes problem , 1989 .

[30]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[31]  T. Hughes,et al.  The Galerkin/least-squares method for advective-diffusive equations , 1988 .

[32]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[33]  Thomas J. R. Hughes,et al.  A Multiscale Discontinuous Galerkin Method , 2005, LSSC.

[34]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .

[35]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[36]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[37]  Bernardo Cockburn,et al.  An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection-diffusion equations , 2009, J. Comput. Phys..

[38]  Giancarlo Sangalli,et al.  LINK-CUTTING BUBBLES FOR THE STABILIZATION OF CONVECTION-DIFFUSION-REACTION PROBLEMS , 2003 .

[39]  PAUL HOUSTON,et al.  Stabilized hp-Finite Element Methods for First-Order Hyperbolic Problems , 2000, SIAM J. Numer. Anal..

[40]  Thomas J. R. Hughes,et al.  Nonlinear Isogeometric Analysis , 2009 .

[41]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[42]  T. Hughes,et al.  The variational multiscale method—a paradigm for computational mechanics , 1998 .

[43]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[44]  Uno Nävert,et al.  An Analysis of some Finite Element Methods for Advection-Diffusion Problems , 1981 .

[45]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[46]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[47]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[48]  Volker John,et al.  On spurious oscillations at layers diminishing (SOLD) methods for convection–diffusion equations: Part I – A review , 2007 .

[49]  J. Hesthaven,et al.  On the constants in hp-finite element trace inverse inequalities , 2003 .

[50]  A. Oberai,et al.  Spectral analysis of the dissipation of the residual-based variational multiscale method , 2010 .

[51]  Paul Houston,et al.  Discontinuous hp-Finite Element Methods for Advection-Diffusion-Reaction Problems , 2001, SIAM J. Numer. Anal..

[52]  Giancarlo Sangalli,et al.  Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems , 2006, SIAM J. Numer. Anal..

[53]  Thomas J. R. Hughes,et al.  A multiscale discontinuous Galerkin method with the computational structure of a continuous Galerkin method , 2006 .

[54]  T. Hughes Multiscale phenomena: Green's functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods , 1995 .

[55]  Giancarlo Sangalli,et al.  Capturing Small Scales in Elliptic Problems Using a Residual-Free Bubbles Finite Element Method , 2003, Multiscale Model. Simul..

[56]  J. Guermond Stabilization of Galerkin approximations of transport equations by subgrid modelling , 1999 .

[57]  Giancarlo Sangalli,et al.  A discontinuous residual-free bubble method for advection-diffusion problems , 2004 .

[58]  Onkar Sahni,et al.  Variational Multiscale Analysis: The Fine-Scale Green's Function for Stochastic Partial Differential Equations , 2013, SIAM/ASA J. Uncertain. Quantification.

[59]  Franco Brezzi,et al.  $b=\int g$ , 1997 .

[60]  John A. Evans,et al.  Enforcement of constraints and maximum principles in the variational multiscale method , 2009 .

[61]  E. Wilson The static condensation algorithm , 1974 .

[62]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .