Avoiding dissipation in a system of three quantum harmonic oscillators

We analyze the symmetries in an open quantum system composed by three coupled and detuned harmonic oscillators in the presence of a common heat bath. It is shown analytically how to engineer the couplings and frequencies of the system so as to have several degrees of freedom unaffected by decoherence, irrespective of the specific spectral density or initial state of the bath. This partial thermalization allows observing asymptotic entanglement at moderate temperatures, even in the nonresonant case. This latter feature cannot be seen in the simpler situation of only two oscillators, highlighting the richer structural variety of the three-body case. When departing from the strict conditions for partial thermalization, a hierarchical structure of dissipation rates for the normal modes is observed, leading to a long transient where quantum correlations such as the quantum discord are largely preserved, as well as to synchronous dynamics of the oscillators quadratures.

[1]  Zbigniew Ficek,et al.  Multi-mode entanglement of N harmonic oscillators coupled to a non-Markovian reservoir , 2009, 0907.2298.

[2]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[3]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[4]  Fabio Benatti,et al.  Irreversible Quantum Dynamics , 2010 .

[5]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[6]  M. D. LaHaye,et al.  Cooling a nanomechanical resonator with quantum back-action , 2006, Nature.

[7]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[8]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[9]  M. Mariantoni,et al.  Two-resonator circuit quantum electrodynamics : A superconducting quantum switch , 2007, 0712.2522.

[10]  Artur Ekert,et al.  Quantum computers and dissipation , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[11]  P. Zanardi,et al.  Noiseless Quantum Codes , 1997, quant-ph/9705044.

[12]  Pere Colet,et al.  Quantum correlations and mutual synchronization , 2011, 1105.4129.

[13]  Florian Marquardt,et al.  Collective dynamics in optomechanical arrays , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[14]  Emilio Hernández-García,et al.  Synchronization, quantum correlations and entanglement in oscillator networks , 2013, Scientific Reports.

[15]  Ting Yu,et al.  Exact master equation and quantum decoherence of two coupled harmonic oscillators in a general environment. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  P. Rabl,et al.  Microscopic model of electric-field-noise heating in ion traps , 2011, 1106.1949.

[17]  R. Alicki Limited thermalization for the Markov mean-field model of N atoms in thermal field , 1988 .

[18]  J Eisert,et al.  Towards quantum entanglement in nanoelectromechanical devices. , 2004, Physical review letters.

[19]  Maximilian Schlosshauer-Selbach Decoherence and the quantum-to-classical transition , 2008 .

[20]  Carsten Henkel,et al.  Noise from metallic surfaces: Effects of charge diffusion , 2008 .

[21]  Gerardo Adesso,et al.  Quantification and scaling of multipartite entanglement in continuous variable systems. , 2004, Physical review letters.

[22]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[23]  M. B. Plenio,et al.  Manipulating the quantum information of the radial modes of trapped ions: linear phononics, entanglement generation, quantum state transmission and non-locality tests , 2008, 0809.4287.

[24]  G J Milburn,et al.  Synchronization of many nanomechanical resonators coupled via a common cavity field. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  Jean-Michel Raimond,et al.  Reversible Decoherence of a Mesoscopic Superposition of Field States , 1997 .

[26]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[27]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[28]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[29]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[30]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[31]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[32]  J. Anders Thermal state entanglement in harmonic lattices , 2008, 0803.1102.

[33]  Raul Vicente,et al.  Zero-lag long-range synchronization via dynamical relaying. , 2006, Physical review letters.

[34]  Jaewan Kim,et al.  Nonperturbative analysis of entanglement dynamics and control for three qubits in a common lossy cavity , 2010 .

[35]  W. Marsden I and J , 2012 .

[36]  I. S. Oliveira,et al.  Entanglement and Bell's inequality violation above room temperature in metal carboxylates , 2009, 0906.0034.

[37]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[38]  Erik Lucero,et al.  Photon shell game in three-resonator circuit quantum electrodynamics , 2010, 1011.3080.

[39]  M. Schlosshauer Decoherence, the measurement problem, and interpretations of quantum mechanics , 2003, quant-ph/0312059.

[40]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[41]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[42]  B. Temelkuran,et al.  Tight-binding description of the coupled defect modes in three-dimensional photonic crystals , 2000, Physical review letters.

[43]  J. Paz,et al.  Dynamics of the entanglement between two oscillators in the same environment. , 2008, Physical review letters.

[44]  W. Zurek Environment-induced superselection rules , 1982 .

[45]  D. Poulin,et al.  Information-preserving structures: A general framework for quantum zero-error information , 2010, 1006.1358.

[46]  David Zueco,et al.  Bringing entanglement to the high temperature limit. , 2010, Physical review letters.

[47]  Guang-Can Guo,et al.  Preserving Coherence in Quantum Computation by Pairing Quantum Bits , 1997 .

[48]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[49]  W. Zurek Pointer Basis of Quantum Apparatus: Into What Mixture Does the Wave Packet Collapse? , 1981 .

[50]  A. Datta,et al.  Quantum versus classical correlations in Gaussian states. , 2010, Physical review letters.

[51]  I. Stamatescu,et al.  Decoherence and the Appearance of a Classical World in Quantum Theory , 1996 .

[52]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[53]  Susana F. Huelga,et al.  Markovian master equations: a critical study , 2010, 1006.4666.

[54]  Roberta Zambrini,et al.  Entanglement dynamics of nonidentical oscillators under decohering environments , 2010, 1002.1927.

[55]  F. Benatti,et al.  Three qubits in a symmetric environment: Dissipatively generated asymptotic entanglement , 2010, 1009.1284.

[56]  Luis A. Correa,et al.  Asymptotic discord and entanglement of nonresonant harmonic oscillators under weak and strong dissipation , 2011, 1111.0806.

[57]  Jakub S. Prauzner-Bechcicki,et al.  LETTER TO THE EDITOR: Two-mode squeezed vacuum state coupled to the common thermal reservoir , 2002 .

[58]  Kuan-Liang Liu,et al.  Non-markovian entanglement dynamics of quantum continuous variable systems in thermal environments , 2007, 0706.0996.

[59]  W. Zurek Decoherence, einselection, and the quantum origins of the classical , 2001, quant-ph/0105127.

[60]  M. Paris,et al.  Gaussian quantum discord. , 2010, Physical review letters.