NILM Dashboard: A Power System Monitor for Electromechanical Equipment Diagnostics

Nonintrusive load monitoring (NILM) uses electrical measurements taken at a centralized point in a network to monitor many loads downstream. This paper introduces NILM dashboard, a machine intelligence, and graphical platform that uses NILM data for real-time electromechanical system diagnostics. The operation of individual loads is disaggregated using signal processing and presented as time-based load activity and statistical indicators. The software allows multiple NILM devices to be networked together to provide information about loads residing on different electrical branches at the same time. A graphical user interface provides analysis tools for energy scorekeeping, detecting fault conditions, and determining operating state. The NILM dashboard is demonstrated on the power system data from two United States Coast Guard cutters.

[1]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[2]  George J. Tsekouras,et al.  Optimal Demand-Side Management and Power Generation Scheduling in an All-Electric Ship , 2014, IEEE Transactions on Sustainable Energy.

[3]  Steven B. Leeb,et al.  Energy Applications for an Energy Box , 2016, IEEE Internet of Things Journal.

[4]  S.B. Leeb,et al.  Estimation of variable-speed-drive power consumption from harmonic content , 2005, IEEE Transactions on Energy Conversion.

[5]  G. W. Hart,et al.  Nonintrusive appliance load monitoring , 1992, Proc. IEEE.

[6]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[7]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[8]  David Lawrence,et al.  Untangling Non-Contact Power Monitoring Puzzles , 2017, IEEE Sensors Journal.

[9]  Steven B. Leeb,et al.  Nonintrusive monitoring for shipboard fault detection , 2017, 2017 IEEE Sensors Applications Symposium (SAS).

[10]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[11]  Xinghuo Yu,et al.  Smart Electricity Meter Data Intelligence for Future Energy Systems: A Survey , 2016, IEEE Transactions on Industrial Informatics.

[12]  Steven B. Leeb,et al.  The Sinefit Spectral Envelope Preprocessor , 2014, IEEE Sensors Journal.

[13]  Jean Merckle,et al.  Test bench and quality measures for non-intrusive load monitoring algorithms , 2013, IECON 2013 - 39th Annual Conference of the IEEE Industrial Electronics Society.

[14]  Wu He,et al.  Internet of Things in Industries: A Survey , 2014, IEEE Transactions on Industrial Informatics.

[15]  John Donnal,et al.  Joule: A Real-Time Framework for Decentralized Sensor Networks , 2018, IEEE Internet of Things Journal.

[16]  Peter Palensky,et al.  Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads , 2011, IEEE Transactions on Industrial Informatics.

[17]  Daisy Green,et al.  NILM-A Smarter Tactical Decision Aid , 2017 .

[18]  Mike Dewar Getting Started with D3 - Creating Data-Driven Documents , 2012 .

[19]  Taskin Koçak,et al.  Smart Grid Technologies: Communication Technologies and Standards , 2011, IEEE Transactions on Industrial Informatics.

[20]  Steven B. Leeb,et al.  Noncontact Power Meter , 2015, IEEE Sensors Journal.

[21]  David E. Irwin,et al.  Redux : The Case for Emphasizing Applications over Accuracy , 2014 .

[22]  Lutz Prechelt,et al.  Early Stopping - But When? , 2012, Neural Networks: Tricks of the Trade.

[23]  Muhammad Ali Imran,et al.  Non-Intrusive Load Monitoring Approaches for Disaggregated Energy Sensing: A Survey , 2012, Sensors.

[24]  Steven B. Leeb,et al.  Hunting Cyclic Energy Wasters , 2014, IEEE Transactions on Smart Grid.

[25]  W G Churchill,et al.  THE UNITED STATES COAST GUARD , 1989 .

[26]  Steven B. Leeb,et al.  NilmDB: The Non-Intrusive Load Monitor Database , 2014, IEEE Transactions on Smart Grid.

[27]  Steven B. Leeb,et al.  Power signature analysis , 2003 .