What Lie algebras can tell us about Jordan algebras

Inspired by Kirillov’s theory of coadjoint orbits, we develop a structure theory for finite dimensional Jordan algebras. Given a Jordan algebra J , we define a generalized distribution HJ on its dual space J ? which is canonically determined by the Jordan product in J , is invariant under the action of what we call the structure group of J , and carries a naturally-defined pseudo-Riemannian bilinear form Gξ at each point. We then turn to the case of positive Jordan algebras and classify the orbits of J ? under the structure group action. We show that the only orbits which are also leaves of HJ are those in the closure of the cone of squares or its negative, and these are the only orbits where this pseudo-Riemannian bilinear form determines a Riemannian metric tensor G. We discuss applications of our construction to both classical and quantum information geometry by showing that, for appropriate choices of J , the Riemannian metric tensor G coincides with the Fisher-Rao metric on non-normalized probability distributions on a finite sample space, or with the Bures-Helstrom metric for non-normalized, faithful quantum states of a finite-level quantum system.

[1]  W. Wootters Statistical distance and Hilbert space , 1981 .

[2]  A. Uhlmann The Metric of Bures and the Geometric Phase. , 1992 .

[3]  Carl W. Helstrom,et al.  The minimum variance of estimates in quantum signal detection , 1968, IEEE Trans. Inf. Theory.

[4]  P. Facchi,et al.  Defining quantumness via the Jordan product , 2013, 1309.4635.

[5]  H. L. Resnikoff Differential geometry and color perception , 1974 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  M. Frei Analysis On Symmetric Cones , 2016 .

[8]  Harald Upmeier,et al.  Symmetric Banach Manifolds and Jordan C*-Algebras , 2012 .

[9]  J. Dixmier ON UNITARY REPRESENTATIONS OF NILPOTENT LIE GROUPS. , 1957, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Jing Liu,et al.  Quantum Fisher information matrix and multiparameter estimation , 2019, Journal of Physics A: Mathematical and Theoretical.

[11]  E. Provenzi Geometry of color perception. Part 1: structures and metrics of a homogeneous color space , 2020, Journal of mathematical neuroscience.

[12]  C. W. Helstrom,et al.  Minimum mean-squared error of estimates in quantum statistics , 1967 .

[13]  Bas Westerbaan,et al.  A computer scientist's reconstruction of quantum theory , 2021 .

[14]  M. Koecher,et al.  The Minnesota Notes on Jordan Algebras and Their Applications , 1999 .

[15]  C. Chu Jordan Structures in Geometry and Analysis , 2012 .

[16]  S. Amari Information geometry , 2021, Japanese Journal of Mathematics.

[17]  A. Lichnerowicz,et al.  Les variétés de Poisson et leurs algèbres de Lie associées , 1977 .

[18]  A. Kirillov Lectures on the Orbit Method , 2004 .

[19]  Giuseppe Marmo,et al.  From the Equations of Motion to the Canonical Commutation Relations , 2010, 1005.1164.

[20]  V. I. Man'ko,et al.  Classical and quantum Fisher information in the geometrical formulation of quantum mechanics , 2010, 1009.5219.

[21]  Shun-ichi Amari,et al.  Differential-geometrical methods in statistics , 1985 .

[22]  Geometry of quantum systems: Density states and entanglement , 2005, math-ph/0507045.

[23]  Dominik vSafr'anek,et al.  Simple expression for the quantum Fisher information matrix , 2018, 1801.00945.

[24]  Florio M. Ciaglia,et al.  From the Jordan Product to Riemannian Geometries on Classical and Quantum States , 2020, Entropy.

[25]  J. Dittmann On the Riemannian metric on the space of density matrices , 1995 .

[26]  J. Baez Getting to the Bottom of Noether's Theorem , 2020, 2006.14741.

[27]  F. Shultz,et al.  State Spaces of Operator Algebras , 2001 .

[28]  Gebräuchliche Fertigarzneimittel,et al.  V , 1893, Therapielexikon Neurologie.

[29]  Dominik vSafr'anek,et al.  Discontinuities of the quantum Fisher information and the Bures metric , 2016, 1612.04581.

[30]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[31]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[32]  M. Paris,et al.  On the discontinuity of the quantum Fisher information for quantum statistical models with parameter dependent rank , 2019, Journal of Physics A: Mathematical and Theoretical.

[33]  G. Tóth,et al.  Quantum metrology from a quantum information science perspective , 2014, 1405.4878.

[34]  Abhay Ashtekar,et al.  Geometry in Color Perception , 1999 .

[35]  M. Berthier Geometry of color perception. Part 2: perceived colors from real quantum states and Hering’s rebit , 2020, Journal of mathematical neuroscience.

[36]  P. Alam ‘L’ , 2021, Composites Engineering: An A–Z Guide.

[37]  B. Kostant Quantization and unitary representations , 1970 .

[38]  H. Sussmann Orbits of families of vector fields and integrability of distributions , 1973 .

[39]  A. Kirillov Elements of the theory of representations , 1976 .

[40]  Florio M. Ciaglia,et al.  Differential Geometric Aspects of Parametric Estimation Theory for States on Finite-Dimensional C∗-Algebras , 2020, Entropy.

[41]  J. Neumann,et al.  On an Algebraic generalization of the quantum mechanical formalism , 1934 .

[42]  J. Dittmann On the Riemannian Geometry of Finite Dimensional Mixed States , 1993 .

[43]  V. Arnold,et al.  Dynamical Systems IV , 1987 .