Single-photon sources–an introduction

This review surveys the physical principles and recent developments in manufacturing single-photon sources. Special emphasis is placed on important potential applications such as linear optical quantum computing (LOQC), quantum key distribution (QKD) and quantum metrology that drive the development of these sources of single photons. We discuss the quantum-mechanical properties of light prepared in a quantum state of definite photon number and compare it with coherent light that shows a Poissonian distribution of photon numbers. We examine how the single-photon fidelity directly influences the ability to transmit secure quantum bits over a predefined distance. The theoretical description of modified spontaneous decay, the main principle behind single-photon generation, provides the background for many experimental implementations such as those using microresonators or pillar microcavities. The main alternative way to generate single photons using postselection of entangled photon pairs from parametric down-conversion, will be discussed. We concentrate on describing the underlying physical principles and we will point out limitations and open problems associated with single-photon production.

[1]  Sae Woo Nam,et al.  Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors , 2007, 0706.0397.

[2]  D. Ritchie,et al.  High performance single photon sources from photolithographically defined pillar microcavities. , 2005, Optics express.

[3]  A. Fiore,et al.  Single photonics at telecom wavelengths using nanowire superconducting detectors , 2006, physics/0610091.

[4]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[5]  M. Genovese Research on hidden variable theories: A review of recent progresses , 2005, quant-ph/0701071.

[6]  P. Petroff,et al.  Nonclassical radiation from a single self-assembled InAs quantum dot , 2001 .

[7]  A J Shields,et al.  Postselective two-photon interference from a continuous nonclassical stream of photons emitted by a quantum dot. , 2008, Physical review letters.

[8]  Herzog,et al.  Compensation of losses in photodetection and in quantum-state measurements. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  P. Grangier,et al.  Single photon quantum cryptography. , 2002, Physical Review Letters.

[10]  Terry Rudolph,et al.  Loss tolerant linear optical quantum memory by measurement-based quantum computing , 2007, 0705.1904.

[11]  S. Scheel,et al.  Spontaneous decay of an excited atom in an absorbing dielectric , 1999, Technical Digest. CLEO/Pacific Rim '99. Pacific Rim Conference on Lasers and Electro-Optics (Cat. No.99TH8464).

[12]  Christine Silberhorn,et al.  Generation of Pure-State Single-Photon Wavepackets by Conditional Preparation Based on Spontaneous Parametric Downconversion , 2006, quant-ph/0611019.

[13]  A Gatti,et al.  Entangled imaging and wave-particle duality: from the microscopic to the macroscopic realm. , 2003, Physical review letters.

[14]  Kyo Inoue,et al.  Secure communication: Quantum cryptography with a photon turnstile , 2002, Nature.

[15]  M. Teich,et al.  Quantum-optical coherence tomography with dispersion cancellation , 2001, quant-ph/0111140.

[16]  N. Lütkenhaus Security against individual attacks for realistic quantum key distribution , 2000 .

[17]  S. Scheel Sum rule for local densities of states in absorbing dielectrics , 2008 .

[18]  Eberhard,et al.  Background level and counter efficiencies required for a loophole-free Einstein-Podolsky-Rosen experiment. , 1993, Physical review. A, Atomic, molecular, and optical physics.

[19]  Yoshihisa Yamamoto,et al.  Indistinguishable photons from a single-photon device , 2002, Nature.

[20]  Hong,et al.  Experimental realization of a localized one-photon state. , 1986, Physical review letters.

[21]  Ian A. Walmsley,et al.  Eliminating frequency and space-time correlations in multiphoton states , 2001 .

[22]  S. Barnett,et al.  Quantum local-field corrections and spontaneous decay , 1999 .

[23]  Terry Rudolph,et al.  Loss tolerance in one-way quantum computation via counterfactual error correction. , 2006, Physical review letters.

[24]  Single photons on demand from 3D photonic band-gap structures , 2002, quant-ph/0207075.

[25]  Y. Lim,et al.  Repeat-until-success quantum computing using stationary and flying qubits (14 pages) , 2005, quant-ph/0508218.

[26]  Nigel P. Fox,et al.  The quantum candela: a re-definition of the standard units for optical radiation , 2007 .

[27]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[28]  Yoshihisa Yamamoto,et al.  Differential phase shift quantum key distribution. , 2002 .

[29]  E. Knill,et al.  A scheme for efficient quantum computation with linear optics , 2001, Nature.

[30]  G. Roger,et al.  Experimental Test of Bell's Inequalities Using Time- Varying Analyzers , 1982 .

[31]  Axel Kuhn,et al.  Kuhn, Hennrich, and Rempe Reply to Comment on "Deterministic single-photon source for distributed quantum networking" , 2002 .

[32]  W. Vogel,et al.  Quantum Optics: VOGEL: QUANTUM OPTICS O-BK , 2006 .

[33]  E. Jaynes,et al.  Comparison of quantum and semiclassical radiation theories with application to the beam maser , 1962 .

[34]  P. Pearle Hidden-Variable Example Based upon Data Rejection , 1970 .

[35]  Gilles Brassard,et al.  Quantum Cryptography , 2005, Encyclopedia of Cryptography and Security.

[36]  Quantum efficiency of single-photon sources in the cavity-QED strong-coupling regime. , 2005, Optics express.

[37]  Polarization-controlled single photons. , 2006, Physical review letters.

[38]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[39]  M. Nielsen,et al.  Noise thresholds for optical quantum computers. , 2005, Physical review letters.

[40]  Daniel Kleppner,et al.  Inhibited Spontaneous Emission , 1981 .

[41]  Paul,et al.  Homodyne detection of the density matrix of the radiation field. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[42]  A. Zeilinger,et al.  Experimental one-way quantum computing , 2005, Nature.

[43]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[44]  Nikolay V. Vitanov,et al.  Coherent Manipulation of Atoms Molecules By Sequential Laser Pulses , 2001 .

[45]  David Y. Smith,et al.  Superconvergence and Sum Rules for the Optical Constants , 1972 .

[46]  W. Chew Waves and Fields in Inhomogeneous Media , 1990 .

[47]  Third-order many-body perturbation theory calculations for the beryllium and magnesium isoelectronic sequences , 2006, physics/0606205.

[48]  Jean-Michel Raimond,et al.  Ultrahigh finesse Fabry-Pérot superconducting resonator , 2007 .

[49]  R. H. Brown,et al.  A Test of a New Type of Stellar Interferometer on Sirius , 1956, Nature.

[50]  P. Knight,et al.  The Jaynes-Cummings Model , 1993 .

[51]  Herbert Walther,et al.  Continuous generation of single photons with controlled waveform in an ion-trap cavity system , 2004, Nature.

[52]  M. Orrit,et al.  Single-photon sources , 2005 .

[53]  M. Cryan,et al.  Three-Dimensional FDTD Simulation of Micro-Pillar Microcavity Geometries Suitable for Efficient Single-Photon Sources , 2007, IEEE Journal of Quantum Electronics.

[54]  Marek Zukowski,et al.  Two-photon Franson-type experiments and local realism , 1999 .

[55]  A. Kuhn,et al.  A Single-Photon Server with Just One Atom , 2007, 2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference.

[56]  Andrew J. Shields,et al.  Electrically driven telecommunication wavelength single-photon source , 2007 .

[57]  P. Knight,et al.  Improving single photon sources via linear optics and photodetection , 2003, International Quantum Electronics Conference.

[58]  N. Yoran,et al.  Deterministic linear optics quantum computation with single photon qubits. , 2003, Physical review letters.

[59]  A. D. Boozer,et al.  Deterministic Generation of Single Photons from One Atom Trapped in a Cavity , 2004, Science.

[60]  J. O'Brien Optical Quantum Computing , 2007, Science.

[61]  Yasuhiko Arakawa,et al.  A gallium nitride single-photon source operating at 200 K , 2006, Nature materials.

[62]  M C Teich,et al.  Role of entanglement in two-photon imaging. , 2001, Physical review letters.

[63]  K. Audenaert,et al.  Scaling of success probabilities for linear optics gates , 2004, quant-ph/0410014.

[64]  Limitations on building single-photon-resolution detection devices , 2003 .

[65]  Teich,et al.  Spatiotemporal coherence properties of entangled light beams generated by parametric down-conversion. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[66]  Sanders,et al.  Limitations on practical quantum cryptography , 2000, Physical review letters.

[67]  M. Pulido,et al.  [The International System of Units]. , 1990, Boletin de la Oficina Sanitaria Panamericana. Pan American Sanitary Bureau.

[68]  E. Purcell,et al.  Resonance Absorption by Nuclear Magnetic Moments in a Solid , 1946 .

[69]  M. Nielsen Cluster-state quantum computation , 2005, quant-ph/0504097.

[70]  Franson,et al.  Bell inequality for position and time. , 1989, Physical review letters.

[71]  J Eisert Optimizing linear optics quantum gates. , 2005, Physical review letters.

[72]  Alexei Gilchrist,et al.  Efficient parity-encoded optical quantum computing , 2007 .

[73]  T. Rudolph,et al.  Resource-efficient linear optical quantum computation. , 2004, Physical review letters.

[74]  Jian-Wei Pan,et al.  Experimental entanglement of six photons in graph states , 2006, quant-ph/0609130.

[75]  Mark Oxborrow,et al.  Single-photon sources , 2005 .

[76]  Hong,et al.  Measurement of subpicosecond time intervals between two photons by interference. , 1987, Physical review letters.

[77]  J Eisert,et al.  Percolation, renormalization, and quantum computing with nondeterministic gates. , 2007, Physical review letters.

[78]  E. Knill,et al.  Quantum gates using linear optics and postselection , 2002 .

[79]  M. Paris,et al.  Reconstruction of photon-number distribution using low-performance photon counters , 2006, quant-ph/0607052.

[80]  P R Tapster,et al.  erratum , 2002, Nature.

[81]  Robert W. Boyd,et al.  Room temperature single-photon Source:Single-dye molecule fluorescence in Liquid Crystal host , 2003 .

[82]  Charles Santori,et al.  Enhanced single-photon emission from a quantum dot in a micropost microcavity , 2003 .

[83]  Shih,et al.  Observation of two-photon "ghost" interference and diffraction. , 1995, Physical review letters.

[84]  P. Knight,et al.  Post-processing with linear optics for improving the quality of single-photon sources , 2004, quant-ph/0402018.

[85]  David C. Burnham,et al.  Observation of Simultaneity in Parametric Production of Optical Photon Pairs , 1970 .

[86]  Norbert Luetkenhaus,et al.  Upper bounds on success probabilities in linear optics , 2004, quant-ph/0403103.

[87]  Teich,et al.  Quantum-mechanical lossless beam splitter: SU(2) symmetry and photon statistics. , 1989, Physical review. A, General physics.

[88]  D. Branning,et al.  Tailoring single-photon and multiphoton probabilities of a single-photon on-demand source , 2002, quant-ph/0205140.

[89]  M. Nielsen Optical quantum computation using cluster States. , 2004, Physical review letters.

[90]  D. L. Dexter Absorption of Light by Atoms in Solids , 1956 .

[91]  B. Shore,et al.  Coherent population transfer among quantum states of atoms and molecules , 1998 .

[92]  Y. K. Ho,et al.  F- and G-wave resonances in positronium-hydrogen scattering , 2000 .

[93]  Costas Fotakis,et al.  LASERS, OPTICS, AND OPTOELECTRONICS 2865 Single-mode solid-state single photon source based on isolated quantum dots in pillar microcavities , 2001 .

[94]  Barnett,et al.  Sum Rule for Modified Spontaneous Emission Rates. , 1996, Physical review letters.

[95]  P. Knight,et al.  Nonlinear tuning of 3D photonic band-gap structures for single-photon on demand sources , 2006 .

[96]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[97]  E. A. Curtis,et al.  Microfabricated high-finesse optical cavity with open access and small volume , 2005, quant-ph/0506234.

[98]  A. Mehta,et al.  Oriented semiconducting polymer nanostructures as on-demand room-temperature single-photon sources , 2004 .

[99]  Adán Cabello,et al.  Minimum detection efficiency for a loophole-free atom-photon bell experiment. , 2007, Physical review letters.

[100]  H. Briegel,et al.  Measurement-based quantum computation on cluster states , 2003, quant-ph/0301052.