Dimensions and bases of hierarchical tensor-product splines

We prove that the dimension of trivariate tensor-product spline space of tri-degree (m,m,m) with maximal order of smoothness over a three-dimensional domain coincides with the number of tensor-product B-spline basis functions acting effectively on the domain considered. A domain is required to belong to a certain class. This enables us to show that, for a certain assumption about the configuration of a hierarchical mesh, hierarchical B-splines span the spline space. This paper presents an extension to three-dimensional hierarchical meshes of results proposed recently by Giannelli and Juttler for two-dimensional hierarchical meshes.

[1]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[2]  L. Billera Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .

[3]  Jiansong Deng,et al.  Dimensions of spline spaces over T-meshes , 2006 .

[4]  Jiansong Deng,et al.  Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..

[5]  Tom Lyche,et al.  T-spline Simplication and Local Renement , 2004 .

[6]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[7]  Tom Lyche,et al.  Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..

[8]  Bert Jüttler,et al.  Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..

[9]  Ahmad H. Nasri,et al.  T-splines and T-NURCCs , 2003, ACM Trans. Graph..

[10]  Jiansong Deng,et al.  Polynomial splines over general T-meshes , 2010, The Visual Computer.

[11]  R. Ho Algebraic Topology , 2022 .

[12]  Giancarlo Sangalli,et al.  Analysis-Suitable T-splines are Dual-Compatible , 2012 .

[13]  Jiansong Deng,et al.  Dimensions of Spline Spaces over 3D Hierarchical T-Meshes ? , 2006 .

[14]  T. Hughes,et al.  Local refinement of analysis-suitable T-splines , 2012 .

[15]  B. Simeon,et al.  A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .

[16]  Meng Wu,et al.  Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions , 2012, Comput. Aided Geom. Des..

[17]  Meng Wu,et al.  Dimension of spline spaces with highest order smoothness over hierarchical T-meshes , 2011, Comput. Aided Geom. Des..

[18]  David R. Forsey,et al.  Hierarchical B-spline refinement , 1988, SIGGRAPH.

[19]  G. Sangalli,et al.  Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .

[20]  Thomas J. R. Hughes,et al.  On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..

[21]  Bernard Mourrain,et al.  On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..

[22]  Hendrik Speleers,et al.  THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..