Dimensions and bases of hierarchical tensor-product splines
暂无分享,去创建一个
Bernard Mourrain | Tae-wan Kim | Dmitry Berdinsky | Durkbin Cho | Cesare Bracco | Min-jae Oh | Sutipong Kiatpanichgij | B. Mourrain | D. Cho | Cesare Bracco | Tae-wan Kim | Min-jae Oh | D. Berdinsky | Sutipong Kiatpanichgij
[1] John Hart,et al. ACM Transactions on Graphics , 2004, SIGGRAPH 2004.
[2] L. Billera. Homology of smooth splines: generic triangulations and a conjecture of Strang , 1988 .
[3] Jiansong Deng,et al. Dimensions of spline spaces over T-meshes , 2006 .
[4] Jiansong Deng,et al. Polynomial splines over hierarchical T-meshes , 2008, Graph. Model..
[5] Tom Lyche,et al. T-spline Simplication and Local Renement , 2004 .
[6] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[7] Tom Lyche,et al. Polynomial splines over locally refined box-partitions , 2013, Comput. Aided Geom. Des..
[8] Bert Jüttler,et al. Bases and dimensions of bivariate hierarchical tensor-product splines , 2013, J. Comput. Appl. Math..
[9] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[10] Jiansong Deng,et al. Polynomial splines over general T-meshes , 2010, The Visual Computer.
[11] R. Ho. Algebraic Topology , 2022 .
[12] Giancarlo Sangalli,et al. Analysis-Suitable T-splines are Dual-Compatible , 2012 .
[13] Jiansong Deng,et al. Dimensions of Spline Spaces over 3D Hierarchical T-Meshes ? , 2006 .
[14] T. Hughes,et al. Local refinement of analysis-suitable T-splines , 2012 .
[15] B. Simeon,et al. A hierarchical approach to adaptive local refinement in isogeometric analysis , 2011 .
[16] Meng Wu,et al. Hierarchical bases of spline spaces with highest order smoothness over hierarchical T-subdivisions , 2012, Comput. Aided Geom. Des..
[17] Meng Wu,et al. Dimension of spline spaces with highest order smoothness over hierarchical T-meshes , 2011, Comput. Aided Geom. Des..
[18] David R. Forsey,et al. Hierarchical B-spline refinement , 1988, SIGGRAPH.
[19] G. Sangalli,et al. Linear independence of the T-spline blending functions associated with some particular T-meshes , 2010 .
[20] Thomas J. R. Hughes,et al. On linear independence of T-spline blending functions , 2012, Comput. Aided Geom. Des..
[21] Bernard Mourrain,et al. On the dimension of spline spaces on planar T-meshes , 2010, Math. Comput..
[22] Hendrik Speleers,et al. THB-splines: The truncated basis for hierarchical splines , 2012, Comput. Aided Geom. Des..