A new auxiliary function method for general constrained global optimization

In this article, we first propose a method to obtain an approximate feasible point for general constrained global optimization problems (with both inequality and equality constraints). Then we propose an auxiliary function method to obtain a global minimizer or an approximate global minimizer with a required precision for general global optimization problems by locally solving some unconstrained programming problems. Some numerical examples are reported to demonstrate the efficiency of the present optimization method.

[1]  Christian Kanzow,et al.  Global Optimization Techniques for Mixed Complementarity Problems , 2000, J. Glob. Optim..

[2]  R. Ge,et al.  The globally convexized filled functions for global optimization , 1990 .

[3]  Panos M. Pardalos,et al.  A Collection of Test Problems for Constrained Global Optimization Algorithms , 1990, Lecture Notes in Computer Science.

[4]  Panos M. Pardalos,et al.  Filled functions for unconstrained global optimization , 2001, J. Glob. Optim..

[5]  Yongjian Yang,et al.  A new filled function method for global optimization , 2015, DSP.

[6]  Xian Liu Finding Global Minima with a Computable Filled Function , 2001, J. Glob. Optim..

[7]  Wenxing Zhu,et al.  Globally concavized filled function method for the box constrained continuous global minimization problem , 2006, Optim. Methods Softw..

[8]  Ge Renpu A filled function method for finding a global minimizer of a function of several variables , 1990 .

[9]  Stefano Lucidi,et al.  New Classes of Globally Convexized Filled Functions for Global Optimization , 2002, J. Glob. Optim..

[10]  Zhi-You Wu,et al.  A filled function method for constrained global optimization , 2007, J. Glob. Optim..

[11]  Wenxing Zhu A class of filled functions for box constrained continuous global optimization , 2005, Appl. Math. Comput..

[12]  Christodoulos A. Floudas,et al.  αBB: A global optimization method for general constrained nonconvex problems , 1995, J. Glob. Optim..

[13]  Zhi-You Wu,et al.  A Novel Filled Function Method and Quasi-Filled Function Method for Global Optimization , 2006, Comput. Optim. Appl..

[14]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .