Closest periodic vectors in Lp spaces

The problem of finding the period of a vector V is central to many applications. Let V′ be a periodic vector closest to V under some metric. We seek this V′, or more precisely we seek the smallest period that generates V′. In this paper we consider the problem of finding the closest periodic vector in L p spaces. The measures of “closeness” that we consider are the metrics in the different L p spaces. Specifically, we consider the L 1, L 2 and L ∞ metrics. In particular, for a given n-dimensional vector V, we develop O(n 2) time algorithms (a different algorithm for each metric) that construct the smallest period that defines such a periodic n-dimensional vector V′. We call that vector the closest periodic vector of V under the appropriate metric. We also show (three) O(n logn) time constant approximation algorithms for the (appropriate) period of the closest periodic vector.

[1]  Ely Porat,et al.  Approximated Pattern Matching with the L1, L2 and Linfinit Metrics , 2008, SPIRE.

[2]  Joseph L. Hellerstein,et al.  Mining partially periodic event patterns with unknown periods , 2001, Proceedings 17th International Conference on Data Engineering.

[3]  Gary Benson,et al.  Optimal Parallel Two Dimensional Text Searching on a CREW PRAM , 1998, Inf. Comput..

[4]  Amihood Amir,et al.  Approximate periodicity , 2015, Inf. Comput..

[5]  Maxime Crochemore,et al.  An Optimal Algorithm for Computing the Repetitions in a Word , 1981, Inf. Process. Lett..

[6]  M. Lothaire,et al.  Applied Combinatorics on Words , 2005 .

[7]  Ely Porat,et al.  Approximate Pattern Matching with the L1, L2 and L∞ Metrics , 2011, Algorithmica.

[8]  Zvi Galil Optimal Parallel Algorithms for String Matching , 1985, Inf. Control..

[9]  Quentin F. Stout,et al.  Unimodal regression via prefix isotonic regression , 2008, Comput. Stat. Data Anal..

[10]  Gary Benson,et al.  Optimal parallel two dimensional pattern matching , 1993, SPAA '93.

[11]  Mireille Régnier,et al.  A Unifying Look at d-Dimensional Periodicities and Space Coverings , 1993, CPM.

[12]  Wojciech Rytter,et al.  Optimally fast parallel algorithms for preprocessing and pattern matching in one and two dimensions , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.

[13]  Zvi Galil,et al.  Alphabet-Independent Two-Dimensional Witness Computation , 1996, SIAM J. Comput..

[14]  Raffaele Giancarlo,et al.  Periodicity and repetitions in parameterized strings , 2005, Discret. Appl. Math..

[15]  Beat Gfeller Finding Longest Approximate Periodic Patterns , 2011, WADS.

[16]  Gary Benson,et al.  Two-Dimensional Periodicity in Rectangular Arrays , 1998, SIAM J. Comput..

[17]  Gary Benson,et al.  Two-dimensional periodicity and its applications , 1992, SODA '92.

[18]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[19]  Gad M. Landau,et al.  An Algorithm for Approximate Tandem Repeats , 2001, J. Comput. Biol..

[20]  Ely Porat,et al.  Cycle Detection and Correction , 2010, ICALP.