Homotopies in Classical and Paraconsistent Modal Logics

Topological semantics for modal logics has recently gained new momentum in many different branches of logic. In this paper, we will consider the topological semantics of both classical and paraconsistent modal logics. This work is a new step in the research program that focuses on paraconsistent systems from geometric and topological point of view. Here, we discuss the functional transformations in paraconsistent and classical modal cases: how to transform one classical or paraconsistent topological model to another, how to transform one transformation to another in a validity preserving way. Furthermore, we also suggest a measure to keep track of such change.

[1]  Anil Nerode,et al.  Modal Logics and Topological Semantics for Hybrid Systems , 1997 .

[2]  Philip Kremer,et al.  Dynamic topological logic , 2005, Ann. Pure Appl. Log..

[3]  G. Mints A Short Introduction to Intuitionistic Logic , 2000 .

[4]  A. Tarski,et al.  The Algebra of Topology , 1944 .

[5]  M. de Rijke,et al.  Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.

[6]  Chris Mortensen Topological Separation Principles And Logical Theories , 2004, Synthese.

[7]  Graham Priest,et al.  DUALISING INTUITIONISTIC NEGATION , 2010 .

[8]  Patrick Blackburn,et al.  Representation, Reasoning, and Relational Structures: a Hybrid Logic Manifesto , 2000, Log. J. IGPL.

[9]  Anthony Hunter,et al.  Paraconsistent logics , 1998 .

[10]  G. Priest What is so bad about contradictions , 1998 .

[11]  Kit Fine,et al.  In so many possible worlds , 1972, Notre Dame J. Formal Log..

[12]  Nicolas D. Goodman,et al.  The Logic of Contradiction , 1981, Math. Log. Q..

[13]  A. Tarski,et al.  On Closed Elements in Closure Algebras , 1946 .

[14]  F. W. Lawvere,et al.  Diagonal arguments and cartesian closed categories , 1969 .

[15]  Robert Goldblatt,et al.  Mathematical modal logic: A view of its evolution , 2003, J. Appl. Log..

[16]  Graham Priest,et al.  Dualising Intuitionictic Negation , 2009 .

[17]  Philip Kremer,et al.  Dynamic topological logic , 2005, Ann. Pure Appl. Log..

[18]  Steve Awodey,et al.  Category Theory , 2006 .

[19]  Can Baskent Paraconsistency and Topological Semantics , 2011, ArXiv.

[20]  Jean-Yves Béziau Paraconsistent logic from a modal viewpoint , 2005, J. Appl. Log..

[21]  F. W. Lawvere,et al.  Intrinsic co-Heyting boundaries and the Leibniz rule in certain toposes , 1991 .