Modeling supplier selection and the use of option contracts for global supply chain design

As supply chains become more and more dependent on the efficient movement of materials among facilities that are geographically dispersed there is more opportunity for disruption. One of the common disruptions is the loss of production capability at supplier sites. We formulate a two-stage stochastic program and a solution procedure to optimize supplier selection to hedge against these disruptions. This model allows for the effective quantitative exploration of the trade-off between cost and risks to support improved decision-making in global supply chain design. A realistic case study is explored.

[1]  Antonio Alonso Ayuso,et al.  Introduction to Stochastic Programming , 2009 .

[2]  Han-Lin Li,et al.  A robust optimization model for stochastic logistic problems , 2000 .

[3]  P. Fishburn Mean-Risk Analysis with Risk Associated with Below-Target Returns , 1977 .

[4]  Ovidiu Listes,et al.  A generic stochastic model for supply-and-return network design , 2007, Comput. Oper. Res..

[5]  Robert J. Vanderbei,et al.  Robust Optimization of Large-Scale Systems , 1995, Oper. Res..

[6]  Gilbert Laporte,et al.  The integer L-shaped method for stochastic integer programs with complete recourse , 1993, Oper. Res. Lett..

[7]  H. V. Landeghem,et al.  Robust planning: a new paradigm for demand chain planning , 2002 .

[8]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[9]  Brian Tomlin,et al.  On the Value of Mitigation and Contingency Strategies for Managing Supply Chain Disruption Risks , 2006, Manag. Sci..

[10]  John M. Mulvey,et al.  A New Scenario Decomposition Method for Large-Scale Stochastic Optimization , 1995, Oper. Res..

[11]  Scott A. Malcolm,et al.  Robust Optimization for Power Systems Capacity Expansion under Uncertainty , 1994 .

[12]  Jennifer Blackhurst,et al.  Network-based approach to modelling uncertainty in a supply chain , 2004 .

[13]  Richard D. Wollmer,et al.  Two stage linear programming under uncertainty with 0–1 integer first stage variables , 1980, Math. Program..

[14]  V. Bawa OPTIMAL, RULES FOR ORDERING UNCERTAIN PROSPECTS+ , 1975 .

[15]  M. U. Thomas,et al.  Supply chain reliability for contingency operations , 2002, Annual Reliability and Maintainability Symposium. 2002 Proceedings (Cat. No.02CH37318).

[16]  Charles S. Tapiero,et al.  Contingent Claims Contracting for Purchasing Decisions in Inventory Management , 1986, Oper. Res..

[17]  B. Rustem,et al.  Robust capacity planning under uncertainty , 1991 .

[18]  Laureano F. Escudero,et al.  Production planning via scenario modelling , 1993, Ann. Oper. Res..

[19]  Yehuda Bassok,et al.  Coordination and Flexibility in Supply Contracts with Options , 2002, Manuf. Serv. Oper. Manag..

[20]  Siddhartha S. Syam Multiperiod Capacity Expansion in Globally Dispersed Regions , 2000, Decis. Sci..

[21]  Mark S. Daskin,et al.  Stochastic p-robust location problems , 2006 .

[22]  Mark S. Daskin,et al.  The α‐reliable mean‐excess regret model for stochastic facility location modeling , 2006 .

[23]  Lawrence V. Snyder,et al.  Facility location under uncertainty: a review , 2006 .

[24]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[25]  Amy Z. Zeng,et al.  How many suppliers are best? A decision-analysis approach , 2004 .

[26]  Siddhartha S. Syam A model for the capacitated p-facility location problem in global environments , 1997, Comput. Oper. Res..

[27]  Richard B. Chase,et al.  A Robust Optimization Approach for Improving Service Quality , 2000, Manuf. Serv. Oper. Manag..

[28]  Dean A. Jones,et al.  Robust optimization for fleet planning under uncertainty , 2003 .

[29]  E. Beale ON MINIMIZING A CONVEX FUNCTION SUBJECT TO LINEAR INEQUALITIES , 1955 .

[30]  Changzheng Liu,et al.  A two-stage stochastic programming model for transportation network protection , 2009, Comput. Oper. Res..

[31]  Mark S. Daskin,et al.  α-reliable p-minimax regret: a new model for strategic facility location modeling , 1997 .

[32]  Rachel A. Davidson,et al.  The risk-return tradeoff in optimizing regional earthquake mitigation investment , 2007 .

[33]  Xiangtong Qi,et al.  A logistics scheduling model: scheduling and transshipment for two processing centers , 2006 .

[34]  R. C. Merton,et al.  Theory of Rational Option Pricing , 2015, World Scientific Reference on Contingent Claims Analysis in Corporate Finance.

[35]  F. Black,et al.  The Pricing of Options and Corporate Liabilities , 1973, Journal of Political Economy.

[36]  George B. Dantzig,et al.  Linear Programming Under Uncertainty , 2004, Manag. Sci..

[37]  Maqbool Dada,et al.  A Newsvendor's Procurement Problem when Suppliers Are Unreliable , 2007, Manuf. Serv. Oper. Manag..

[38]  Clifford W. Smith,et al.  Option pricing: A review , 1976 .

[39]  Lawrence V. Snyder,et al.  Reliability Models for Facility Location: The Expected Failure Cost Case , 2005, Transp. Sci..

[40]  Mark S. Daskin,et al.  Strategic facility location: A review , 1998, Eur. J. Oper. Res..

[41]  Marc Goetschalckx,et al.  A stochastic programming approach for supply chain network design under uncertainty , 2004, Eur. J. Oper. Res..

[42]  Lawrence V. Snyder,et al.  The stochastic location model with risk pooling , 2007, Eur. J. Oper. Res..