Computational methods toward unbiased pattern mining and structure determination in cryo-electron tomography data.

[1]  S. Scheres,et al.  A Bayesian approach to single-particle electron cryo-tomography in RELION-4.0 , 2022, bioRxiv.

[2]  F. Beck,et al.  Volumetric macromolecule identification in cryo-electron tomograms using capsule networks , 2022, BMC Bioinform..

[3]  Paula P. Navarro Quantitative Cryo-Electron Tomography , 2022, Frontiers in Molecular Biosciences.

[4]  F. Jug,et al.  ScipionTomo: Towards cryo-electron tomography software integration, reproducibility, and validation , 2022, Journal of structural biology.

[5]  Fa Zhang,et al.  VP-Detector: A 3D multi-scale dense convolutional neural network for macromolecule localization and classification in cryo-electron tomograms , 2022, Comput. Methods Programs Biomed..

[6]  Min Xu,et al.  CryoETGAN: Cryo-Electron Tomography Image Synthesis via Unpaired Image Translation , 2022, Frontiers in Physiology.

[7]  Benjamin A. Himes,et al.  High-resolution in situ structure determination by cryo-electron tomography and subtomogram averaging using emClarity , 2022, Nature protocols.

[8]  Sima Behpour,et al.  Cryo-shift: Reducing domain shift in cryo-electron subtomograms with unsupervised domain adaptation and randomization , 2021, Bioinform..

[9]  S. Ovchinnikov,et al.  ColabFold: making protein folding accessible to all , 2022, Nature Methods.

[10]  V. Lučić,et al.  Statistical spatial analysis for cryo-electron tomography , 2021, Comput. Methods Programs Biomed..

[11]  S. Scaramuzza,et al.  Step-by-step guide to efficient subtomogram averaging of virus-like particles with Dynamo , 2021, PLoS biology.

[12]  Gyu Rie Lee,et al.  Accurate prediction of protein structures and interactions using a 3-track neural network , 2021, Science.

[13]  Oriol Vinyals,et al.  Highly accurate protein structure prediction with AlphaFold , 2021, Nature.

[14]  S. Jonić,et al.  HEMNMA-3D: Cryo Electron Tomography Method Based on Normal Mode Analysis to Study Continuous Conformational Variability of Macromolecular Complexes , 2021, Frontiers in Molecular Biosciences.

[15]  C. Mullineaux,et al.  Probing the biogenesis pathway and dynamics of thylakoid membranes , 2021, Nature Communications.

[16]  Benjamin A. Himes,et al.  Locating macromolecular assemblies in cells by 2D template matching with cisTEM , 2021, bioRxiv.

[17]  J. Kosiński,et al.  Integrative structural modeling of macromolecular complexes using Assembline , 2021, Nature Protocols.

[18]  Damien Larivière,et al.  Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms , 2020, Nature Methods.

[19]  Xiangrui Zeng,et al.  Efficient Cryo-Electron Tomogram Simulation of Macromolecular Crowding with Application to SARS-CoV-2 , 2020, 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[20]  W. Baumeister,et al.  The promise and the challenges of cryo‐electron tomography , 2020, FEBS letters.

[21]  X. Ban,et al.  A unified framework for packing deformable and non-deformable subcellular structures in crowded cryo-electron tomogram simulation , 2020, BMC Bioinform..

[22]  J Bernard Heymann,et al.  High resolution electron tomography and segmentation‐by‐modeling interpretation in Bsoft , 2020, Protein science : a publication of the Protein Society.

[23]  Wolfgang Baumeister,et al.  Template-free detection and classification of membrane-bound complexes in cryo-electron tomograms , 2020, Nature Methods.

[24]  Ross B. Girshick,et al.  Focal Loss for Dense Object Detection , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Giulia Zanetti,et al.  In situ structure determination by subtomogram averaging. , 2019, Current opinion in structural biology.

[26]  F. Schur,et al.  Toward high-resolution in situ structural biology with cryo-electron tomography and subtomogram averaging. , 2019, Current opinion in structural biology.

[27]  Ida-Maria Sintorn,et al.  Reducing the U-Net size for practical scenarios: Virus recognition in electron microscopy images , 2019, Comput. Methods Programs Biomed..

[28]  Xiangrui Zeng,et al.  Adversarial domain adaptation for cross data source macromolecule in situ structural classification in cellular electron cryo-tomograms , 2019, Bioinform..

[29]  Genki Terashi,et al.  Classification in Cryo-Electron Tomograms , 2019, 3DOR@Eurographics.

[30]  Muyuan Chen,et al.  A complete data processing workflow for CryoET and subtomogram averaging , 2019, Nature Methods.

[31]  Thorsten Wagner,et al.  SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM , 2019, Communications Biology.

[32]  Min Xu,et al.  SHREC’19 Track: Classification in Cryo-Electron Tomograms , 2019 .

[33]  F. Bunyak,et al.  DRPnet: automated particle picking in cryo-electron micrographs using deep regression , 2021, BIBM.

[34]  Benjamin A. Himes,et al.  emClarity: Software for High Resolution Cryo-electron Tomography and Sub-tomogram Averaging , 2018, Nature Methods.

[35]  Muyuan Chen,et al.  New software tools in EMAN2 inspired by EMDatabank map challenge. , 2018, Journal of structural biology.

[36]  Henning Stahlberg,et al.  Protocols for Subtomogram Averaging of Membrane Proteins in the Dynamo Software Package , 2018, Front. Mol. Biosci..

[37]  Stella Y. Sun,et al.  Flagellum couples cell shape to motility in Trypanosoma brucei , 2018, Proceedings of the National Academy of Sciences.

[38]  A. Koster,et al.  Advances in cryo-electron tomography for biology and medicine. , 2018, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[39]  Qiang Guo,et al.  An integration of fast alignment and maximum-likelihood methods for electron subtomogram averaging and classification , 2018, Bioinform..

[40]  Karim Elmaaroufi,et al.  Improved deep learning-based macromolecules structure classification from electron cryo-tomograms , 2017, Machine Vision and Applications.

[41]  Iasonas Kokkinos,et al.  DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[42]  Catherine M. Oikonomou,et al.  Cellular Electron Cryotomography: Toward Structural Biology In Situ. , 2017, Annual review of biochemistry.

[43]  Frank Alber,et al.  TomoMiner and TomoMinerCloud: A Software Platform for Large-Scale Subtomogram Structural Analysis. , 2017, Structure.

[44]  Daniel Castaño-Díez,et al.  The Dynamo package for tomography and subtomogram averaging: components for MATLAB, GPU computing and EC2 Amazon Web Services , 2017, Acta crystallographica. Section D, Structural biology.

[45]  Andrew P. French,et al.  SuRVoS: Super-Region Volume Segmentation workbench , 2017, Journal of structural biology.

[46]  Daniel Castaño-Díez,et al.  Dynamo Catalogue: Geometrical tools and data management for particle picking in subtomogram averaging of cryo-electron tomograms. , 2017, Journal of structural biology.

[47]  Wei Dai,et al.  Convolutional Neural Networks for Automated Annotation of Cellular Cryo-Electron Tomograms , 2017, Nature Methods.

[48]  Lei Zhang,et al.  Beyond a Gaussian Denoiser: Residual Learning of Deep CNN for Image Denoising , 2016, IEEE Transactions on Image Processing.

[49]  V. Lučić,et al.  Hierarchical detection and analysis of macromolecular complexes in cryo-electron tomograms using Pyto software. , 2016, Journal of structural biology.

[50]  W. Baumeister,et al.  Cryo-Electron Tomography: Can it Reveal the Molecular Sociology of Cells in Atomic Detail? , 2016, Trends in cell biology.

[51]  Sjors H W Scheres,et al.  Resolving macromolecular structures from electron cryo-tomography data using subtomogram averaging in RELION , 2016, Nature Protocols.

[52]  Tian Xia,et al.  DeepPicker: a Deep Learning Approach for Fully Automated Particle Picking in Cryo-EM , 2016, Journal of structural biology.

[53]  Shoh M. Asano,et al.  In Situ Cryo-Electron Tomography: A Post-Reductionist Approach to Structural Biology. , 2016, Journal of molecular biology.

[54]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[55]  Min Xu,et al.  De Novo Structural Pattern Mining in Cellular Electron Cryotomograms. , 2015, Structure.

[56]  S. Scheres,et al.  Advances in Single-Particle Electron Cryomicroscopy Structure Determination applied to Sub-tomogram Averaging , 2015, Structure.

[57]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[58]  Yuxiang Chen,et al.  Autofocused 3D classification of cryoelectron subtomograms. , 2014, Structure.

[59]  Shoh Asano,et al.  Robust membrane detection based on tensor voting for electron tomography. , 2014, Journal of structural biology.

[60]  Richard Henderson,et al.  Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise , 2013, Proceedings of the National Academy of Sciences.

[61]  V. Lučić,et al.  Cryo-electron tomography: The challenge of doing structural biology in situ , 2013, The Journal of cell biology.

[62]  Yuxiang Chen,et al.  Fast and accurate reference-free alignment of subtomograms. , 2013, Journal of structural biology.

[63]  Sjors H.W. Scheres,et al.  RELION: Implementation of a Bayesian approach to cryo-EM structure determination , 2012, Journal of structural biology.

[64]  Steven J Ludtke,et al.  Single Particle Tomography in EMAN2 , 2012, Microscopy and Microanalysis.

[65]  Daniel Baum,et al.  Automated tracing of microtubules in electron tomograms of plastic embedded samples of Caenorhabditis elegans embryos. , 2012, Journal of structural biology.

[66]  Daniel Castaño-Díez,et al.  Dynamo: a flexible, user-friendly development tool for subtomogram averaging of cryo-EM data in high-performance computing environments. , 2012, Journal of structural biology.

[67]  Yuxiang Chen,et al.  PyTom: a python-based toolbox for localization of macromolecules in cryo-electron tomograms and subtomogram analysis. , 2012, Journal of structural biology.

[68]  Zbigniew Starosolski,et al.  Automated tracing of filaments in 3D electron tomography reconstructions using Sculptor and Situs. , 2012, Journal of structural biology.

[69]  Sjors H.W. Scheres,et al.  A Bayesian View on Cryo-EM Structure Determination , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[70]  Daniel Baum,et al.  Automated segmentation of electron tomograms for a quantitative description of actin filament networks. , 2012, Journal of structural biology.

[71]  John M Heumann,et al.  Clustering and variance maps for cryo-electron tomography using wedge-masked differences. , 2011, Journal of structural biology.

[72]  Antonio Martinez-Sanchez,et al.  A differential structure approach to membrane segmentation in electron tomography. , 2011, Journal of structural biology.

[73]  Friedrich Förster,et al.  Visual proteomics. , 2010, Methods in enzymology.

[74]  Mark Horowitz,et al.  3D segmentation of cell boundaries from whole cell cryogenic electron tomography volumes. , 2010, Journal of structural biology.

[75]  M. Valle,et al.  Averaging of electron subtomograms and random conical tilt reconstructions through likelihood optimization. , 2009, Structure.

[76]  M. Reedy,et al.  Methods for identifying and averaging variable molecular conformations in tomograms of actively contracting insect flight muscle. , 2009, Journal of structural biology.

[77]  M. Shatsky,et al.  A method for the alignment of heterogeneous macromolecules from electron microscopy. , 2009, Journal of structural biology.

[78]  K. Taylor,et al.  Tomographic subvolume alignment and subvolume classification applied to myosin V and SIV envelope spikes. , 2009, Journal of structural biology.

[79]  Sabine Pruggnaller,et al.  A visualization and segmentation toolbox for electron microscopy. , 2008, Journal of structural biology.

[80]  G Sapiro,et al.  Classification and 3D averaging with missing wedge correction in biological electron tomography. , 2008, Journal of structural biology.

[81]  Qiang Ji,et al.  Shape-Driven Three-Dimensional Watersnake Segmentation of Biological Membranes in Electron Tomography , 2008, IEEE Transactions on Medical Imaging.

[82]  Friedrich Förster,et al.  Classification of cryo-electron sub-tomograms using constrained correlation. , 2008, Journal of structural biology.

[83]  A. Sali,et al.  The molecular sociology of the cell , 2007, Nature.

[84]  K. Taylor,et al.  Localization and Classification of Repetitive Structures in Electron Tomograms of Paracrystalline Assemblies , 2007 .

[85]  J Bernard Heymann,et al.  Bsoft: image processing and molecular modeling for electron microscopy. , 2007, Journal of structural biology.

[86]  Hanspeter Winkler,et al.  3D reconstruction and processing of volumetric data in cryo-electron tomography. , 2007, Journal of structural biology.

[87]  G. Herman,et al.  Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization , 2007, Nature Methods.

[88]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[89]  J. McIntosh,et al.  The Molecular Architecture of Axonemes Revealed by Cryoelectron Tomography , 2006, Science.

[90]  Wolfgang Baumeister,et al.  A visual approach to proteomics , 2006, Nature Reviews Molecular Cell Biology.

[91]  Guillermo Sapiro,et al.  An energy-based three-dimensional segmentation approach for the quantitative interpretation of electron tomograms , 2005, IEEE Transactions on Image Processing.

[92]  Friedrich Förster,et al.  TOM software toolbox: acquisition and analysis for electron tomography. , 2005, Journal of structural biology.

[93]  David B Ress,et al.  Methods for generating high-resolution structural models from electron microscope tomography data. , 2004, Structure.

[94]  Friedrich Förster,et al.  Computational exploration of structural information from cryo-electron tomograms. , 2004, Current opinion in structural biology.

[95]  W. Baumeister,et al.  Prospects of electron cryotomography to visualize macromolecular complexes inside cellular compartments: implications of crowding. , 2002, Biophysical chemistry.

[96]  F. Förster,et al.  Identification of macromolecular complexes in cryoelectron tomograms of phantom cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Ross T. Whitaker,et al.  A direct approach to estimating surfaces in tomographic data , 2002, Medical Image Anal..

[98]  W. Wriggers,et al.  Fast rotational matching. , 2002, Acta crystallographica. Section D, Biological crystallography.

[99]  Niels Volkmann,et al.  A novel three-dimensional variant of the watershed transform for segmentation of electron density maps. , 2002, Journal of structural biology.

[100]  David Carlisle,et al.  IT'S NOISY OUT THERE , 2001 .

[101]  A S Frangakis,et al.  Toward detecting and identifying macromolecules in a cellular context: template matching applied to electron tomograms. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[102]  Kenneth A. Taylor,et al.  Multivariate statistical analysis of three-dimensional cross-bridge motifs in insect flight muscle , 1999 .

[103]  J R Kremer,et al.  Computer visualization of three-dimensional image data using IMOD. , 1996, Journal of structural biology.

[104]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[105]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .