GaAs1−yBiy Raman signatures: illuminating relationships between the electrical and optical properties of GaAs1−yBiy and Bi incorporation

We report the use of two Raman signatures, the Bi-induced longitudinal-optical-plasmon-coupled (LOPC) mode and the GaAs Frohlich scattering intensity, present in nominally undoped (100) GaAs1−yBiy to predict the 300K photoluminescence intensity and Bi composition (y) in GaAs1−yBiy. The LOPC mode is used to calculate the hole concentration in GaAs1−yBiy epitaxial layers. A linear relationship between hole concentration and photoluminescence intensity is found for a range of samples grown at various temperatures and growth rates. In addition, the composition (y) of Bi in GaAs1−yBiy is also found to be linearly related to the GaAs Frohlich scattering intensity.

[1]  K. Forghani,et al.  Growth of GaAs1−xBix by molecular beam epitaxy: Trade-offs in optical and structural characteristics , 2014 .

[2]  G. Salamo,et al.  Raman scattering reveals strong LO-phonon-hole-plasmon coupling in nominally undoped GaAsBi: optical determination of carrier concentration. , 2014, Optics express.

[3]  L. Mawst,et al.  Low temperature growth of GaAs1−yBiy epitaxial layers , 2013 .

[4]  Ryan B. Lewis,et al.  Growth of high Bi concentration GaAs1−xBix by molecular beam epitaxy , 2012 .

[5]  M. Capizzi,et al.  Compositional evolution of bi-induced acceptor states in gaas(1-x)bi(x) alloy , 2011 .

[6]  K. Jarašiūnas,et al.  Hole diffusivity in GaAsBi alloys measured by a picosecond transient grating technique , 2011 .

[7]  R. Reedy,et al.  Effect of Bi alloying on the hole transport in the dilute bismide alloy GaAs 1 − x Bi x , 2011 .

[8]  A. Krotkus,et al.  Valence band anticrossing in GaBixAs1−x , 2007 .

[9]  T. Tiedje,et al.  Giant spin-orbit bowing in GaAs1-xBix. , 2006, Physical review letters.

[10]  M. Seong,et al.  Bi-induced vibrational modes in GaAsBi , 2005 .

[11]  Angelo Mascarenhas,et al.  Band gap of GaAs1−xBix, 0 , 2003 .

[12]  François Schiettekatte,et al.  Molecular beam epitaxy growth of GaAs1−xBix , 2003 .

[13]  T. Kim,et al.  Raman studies of heavily carbon doped GaAs , 1998 .

[14]  R. Fukasawa,et al.  Far-Infrared Reflectance Study of Coupled Longitudinal-Optical Phonon-Hole Plasmon Modes and Transport Properties in Heavily Doped p-Type GaAs , 1997 .

[15]  Mora,et al.  Impurity-induced resonant Raman scattering. , 1992, Physical review. B, Condensed matter.

[16]  A. Mlayah,et al.  Raman study of longitudinal optical phonon‐plasmon coupling and disorder effects in heavily Be‐doped GaAs , 1991 .

[17]  Jeff F. Young,et al.  Free‐carrier density determination in p‐type GaAs using Raman scattering from coupled plasmon‐phonon modes , 1988 .

[18]  M. Cardona,et al.  Raman scattering by coupled LO-phonon—plasmon modes and forbidden TO-phonon Raman scattering in heavily dopedp-type GaAs , 1981 .