Micromagnetic simulations of vortex-state excitations in soft magnetic nanostructures

The dynamic susceptibility spectra of Permalloy nanodots, supporting a vortex-type magnetic configuration, are studied within the frequency range $0.2\char21{}20\phantom{\rule{0.3em}{0ex}}\mathrm{GHz}$ as a function of dot thickness $(10\phantom{\rule{0.3em}{0ex}}\mathrm{nm}\ensuremath{\leqslant}{L}_{z}\ensuremath{\leqslant}80\phantom{\rule{0.3em}{0ex}}\mathrm{nm})$ by means of three-dimensional dynamic micromagnetic simulations. In addition to the low-frequency vortex translation mode (gyrotropic motion of the vortex core), a second vortex core mode is revealed at a higher frequency for thicker nanodots (in-plane pumping field). This mode whose resonance frequency decreases rapidly with increasing dot thickness originates from the nonuniform vortex structure along the dot normal axis. Higher frequency modes are also observed for both in-plane and perpendicular pumping field orientations and correspond mostly to spin excitations localized outside the vortex core. The possible detection of the two vortex core modes within an individual nanodot using resonance experiments is discussed on the basis of the dispersion relation frequency versus perpendicular static magnetic field.

[1]  R. Hertel,et al.  Resonant modes of vortex structures in soft-magnetic nanodiscs , 2004 .

[2]  Ono,et al.  Magnetic vortex core observation in circular dots of permalloy , 2000, Science.

[3]  Stéphane Labbé,et al.  Microwave polarizability of ferrite particles with non-uniform magnetization , 1999 .

[4]  D. Mailly,et al.  Switching of magnetization by nonlinear resonance studied in single nanoparticles , 2003, Nature materials.

[5]  B. A. Ivanov,et al.  Eigenfrequencies of vortex state excitations in magnetic submicron-size disks , 2001 .

[6]  C. Fermon,et al.  Micromagnetic phase transitions and spin wave excitations in a ferromagnetic stripe. , 2003, Physical review letters.

[7]  B. Ivanov,et al.  Magnon modes for thin circular vortex-state magnetic dots , 2002 .

[8]  Jörg Raabe,et al.  Magnetization pattern of ferromagnetic nanodisks , 2000 .

[9]  N. A. Usov,et al.  Magnetization curling in a fine cylindrical particle , 1993 .

[10]  Konstantin Yu. Guslienko,et al.  Stability of magnetic vortex in soft magnetic nano-sized circular cylinder , 2002 .

[11]  Ronald B. Goldfarb,et al.  Demagnetizing factors for cylinders , 1991 .

[12]  N. Usov,et al.  Magnetodynamics of vortex in thin cylindrical platelet , 2002 .

[13]  R. Wiesendanger,et al.  Direct Observation of Internal Spin Structure of Magnetic Vortex Cores , 2002, Science.

[14]  Josef Zweck,et al.  Lorentz microscopy of circular ferromagnetic permalloy nanodisks , 2000 .

[15]  V. Novosad,et al.  Spin excitations of magnetic vortices in ferromagnetic nanodots. , 2002 .

[16]  J. P. Park,et al.  Imaging of spin dynamics in closure domain and vortex structures , 2002, cond-mat/0208572.

[17]  R. Hertel,et al.  Micromagnetic study of magnetic configurations in submicron permalloy disks , 2003 .

[18]  V. Naletov,et al.  Mechanical detection of ferromagnetic resonance spectrum in a normally magnetized yttrium–iron–garnet disk , 2002 .

[19]  Stéphane Labbé,et al.  High-frequency susceptibility of soft ferromagnetic nanodots , 2004 .

[20]  R. Cowburn,et al.  Single-Domain Circular Nanomagnets , 1999 .

[21]  J. Slonczewski Modes of natural vibration for magnetic domains , 1981 .