Generalized concatenated codes based on polar codes

Polar codes are demonstrated to be instances of both generalized concatenated codes and multilevel codes. It is shown that Gaussian approximation for density evolution enables one to accurately predict the performance of polar codes. A construction of generalized concatenated codes is proposed, which is based on the equal error probability design rule originally developed in the context of multilevel codes.

[1]  E. Arkan,et al.  A performance comparison of polar codes and Reed-Muller codes , 2008, IEEE Communications Letters.

[2]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[3]  Hideki Imai,et al.  A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.

[4]  Erdal Arıkan Two-dimensional polar coding , 2009 .

[5]  Toshiyuki Tanaka,et al.  Performance of polar codes with the construction using density evolution , 2009, IEEE Communications Letters.

[6]  Sae-Young Chung,et al.  Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.

[7]  Johannes B. Huber,et al.  Improving successive cancellation decoding of polar codes by usage of inner block codes , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.

[8]  Martin Bossert,et al.  Channel Coding for Telecommunications , 1999 .

[9]  Toshiyuki Tanaka,et al.  Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes , 2010, 2010 IEEE Information Theory Workshop.

[10]  Robert F. H. Fischer,et al.  Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.

[11]  Rüdiger L. Urbanke,et al.  Polar Codes: Characterization of Exponent, Bounds, and Constructions , 2010, IEEE Transactions on Information Theory.

[12]  Martin Bossert,et al.  Soft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes , 1995, IEEE Trans. Inf. Theory.

[13]  A. Valembois,et al.  Box and match techniques applied to soft-decision decoding , 2002, Proceedings IEEE International Symposium on Information Theory,.