Generalized concatenated codes based on polar codes
暂无分享,去创建一个
[1] E. Arkan,et al. A performance comparison of polar codes and Reed-Muller codes , 2008, IEEE Communications Letters.
[2] Erdal Arikan,et al. Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.
[3] Hideki Imai,et al. A new multilevel coding method using error-correcting codes , 1977, IEEE Trans. Inf. Theory.
[4] Erdal Arıkan. Two-dimensional polar coding , 2009 .
[5] Toshiyuki Tanaka,et al. Performance of polar codes with the construction using density evolution , 2009, IEEE Communications Letters.
[6] Sae-Young Chung,et al. Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation , 2001, IEEE Trans. Inf. Theory.
[7] Johannes B. Huber,et al. Improving successive cancellation decoding of polar codes by usage of inner block codes , 2010, 2010 6th International Symposium on Turbo Codes & Iterative Information Processing.
[8] Martin Bossert,et al. Channel Coding for Telecommunications , 1999 .
[9] Toshiyuki Tanaka,et al. Non-binary polar codes using Reed-Solomon codes and algebraic geometry codes , 2010, 2010 IEEE Information Theory Workshop.
[10] Robert F. H. Fischer,et al. Multilevel codes: Theoretical concepts and practical design rules , 1999, IEEE Trans. Inf. Theory.
[11] Rüdiger L. Urbanke,et al. Polar Codes: Characterization of Exponent, Bounds, and Constructions , 2010, IEEE Transactions on Information Theory.
[12] Martin Bossert,et al. Soft-decision decoding of Reed-Muller codes as generalized multiple concatenated codes , 1995, IEEE Trans. Inf. Theory.
[13] A. Valembois,et al. Box and match techniques applied to soft-decision decoding , 2002, Proceedings IEEE International Symposium on Information Theory,.